二阶弹簧阻尼系统粒子群优化matlab代码
时间: 2023-07-24 15:10:23 浏览: 86
以下是二阶弹簧阻尼系统粒子群优化的Matlab代码示例:
```matlab
% 定义目标函数(稳态误差)
function e = objective(c, k)
m = 1.0;
omega = sqrt(k/m);
zeta = c/(2*sqrt(m*k));
e = 1/(1+(omega^2)*(1-zeta^2));
end
% 定义粒子群优化函数
function [gbest, gbest_fit] = pso(obj_func, dim, n_particles, n_iter, lb, ub)
% 初始化粒子群
x = rand(n_particles, dim).*(ub-lb) + lb;
v = zeros(n_particles, dim);
p = x;
pbest = inf(n_particles, 1);
gbest = zeros(1, dim);
gbest_fit = inf;
% 迭代优化
for i = 1:n_iter
% 更新速度和位置
r1 = rand(n_particles, dim);
r2 = rand(n_particles, dim);
v = 0.5*v + 2*r1.*(p-x) + 2*r2.*(repmat(gbest, n_particles, 1)-x);
x = x + v;
% 边界处理
x = max(x, lb);
x = min(x, ub);
% 更新个体最优解和全局最优解
for j = 1:n_particles
fitness = obj_func(x(j,:));
if fitness < pbest(j)
pbest(j) = fitness;
p(j,:) = x(j,:);
end
if fitness < gbest_fit
gbest_fit = fitness;
gbest = x(j,:);
end
end
end
end
% 调用粒子群优化函数求解最优解
[c_best, k_best] = pso(@objective, 2, 50, 100, 0, 10);
fprintf("最优解:c = %.4f, k = %.4f\n", c_best, k_best);
fprintf("最小稳态误差:%.4f\n", objective(c_best, k_best));
```
其中,objective函数定义了目标函数(稳态误差),pso函数实现了粒子群优化算法,c_best和k_best分别表示最优解的阻尼系数和弹簧劲度系数,最小稳态误差即为优化结果。