使用python实现分治法中的矩阵乘法
时间: 2023-11-02 11:05:58 浏览: 166
以下是Python实现分治法中的矩阵乘法的示例代码:
```python
def matrix_multiply(A, B):
"""
分治法实现矩阵乘法
:param A: 矩阵A
:param B: 矩阵B
:return: 矩阵C
"""
n = len(A)
C = [[0 for _ in range(n)] for _ in range(n)]
if n == 1:
C[0][0] = A[0][0] * B[0][0]
else:
A11, A12, A21, A22 = divide_matrix(A)
B11, B12, B21, B22 = divide_matrix(B)
C11 = add_matrix(matrix_multiply(A11, B11), matrix_multiply(A12, B21))
C12 = add_matrix(matrix_multiply(A11, B12), matrix_multiply(A12, B22))
C21 = add_matrix(matrix_multiply(A21, B11), matrix_multiply(A22, B21))
C22 = add_matrix(matrix_multiply(A21, B12), matrix_multiply(A22, B22))
C = merge_matrix(C11, C12, C21, C22)
return C
def divide_matrix(A):
"""
将矩阵A分成四个子矩阵
:param A: 矩阵A
:return: 四个子矩阵
"""
n = len(A)
m = n // 2
A11 = [[A[i][j] for j in range(m)] for i in range(m)]
A12 = [[A[i][j] for j in range(m, n)] for i in range(m)]
A21 = [[A[i][j] for j in range(m)] for i in range(m, n)]
A22 = [[A[i][j] for j in range(m, n)] for i in range(m, n)]
return A11, A12, A21, A22
def add_matrix(A, B):
"""
矩阵加法
:param A: 矩阵A
:param B: 矩阵B
:return: 矩阵C
"""
n = len(A)
C = [[0 for _ in range(n)] for _ in range(n)]
for i in range(n):
for j in range(n):
C[i][j] = A[i][j] + B[i][j]
return C
def merge_matrix(A11, A12, A21, A22):
"""
合并四个子矩阵
:param A11: 子矩阵A11
:param A12: 子矩阵A12
:param A21: 子矩阵A21
:param A22: 子矩阵A22
:return: 矩阵A
"""
n = len(A11)
A = [[0 for _ in range(2 * n)] for _ in range(2 * n)]
for i in range(n):
for j in range(n):
A[i][j] = A11[i][j]
A[i][j + n] = A12[i][j]
A[i + n][j] = A21[i][j]
A[i + n][j + n] = A22[i][j]
return A
```
在示例代码中,divide_matrix函数将矩阵A分成四个子矩阵,add_matrix函数实现矩阵加法,merge_matrix函数将四个子矩阵合并成一个矩阵。而matrix_multiply函数使用递归实现分治法的矩阵乘法,当矩阵大小为1时直接计算乘积,否则将矩阵A和矩阵B分成四个子矩阵,然后递归地计算子矩阵的乘积,并将四个子矩阵的乘积合并成一个矩阵返回。
阅读全文