在Linux内核驱动中,构建一个存放如下结构体指针的队列: struct msg { u16 module_id; u16 cmd_id; u16 cmd_subid; u16 complete; u8 data[128]; };、 队列结构体如下:struct ring_buffer { int head; int tail; struct msg *data; int size; unsigned int capacity; }; 请给出操作这个队列的函数,包括初始化,入队,出队,注销等。 再构建两个函数: 函数一初始化msg结构体,将msg所有成员设置为常数(其中msg的complete成员设置为0),向msg的data数组内放置两个unsigned int 类型数据a和b,之后将msg结构体放入队列中,触发函数二,使用usleep_range()函数等待函数二将msg的complete成员设置为1后,获取函数二放入的c并还原成unsigned int 类型。 函数二需要从队列中取出msg,并进行解析:判断msg的module_id是否为0x1,如果不是,报错,如果是0x1,使用switch函数解析msg的cmd_id,再根据不同的cmd_id解析cmd_subid,具体解析内容为,取出在函数一向msg的data数组中放入的a和b,还原成unsigned int 类型数据,再将一个unsigned int 类型数据c=1000,放到msg的data数组内,之后,再将msg中的complete置1;请在驱动的probe函数中注册这个队列,在remove函数中注销队列,使用移位的方式放置和还原unsigned int类型数据
时间: 2024-03-17 18:42:33 浏览: 61
Linux操作系统内核中工作队列的操作
初始化队列的函数:
```
void init_ring_buffer(struct ring_buffer *rb, int size, unsigned int capacity) {
rb->head = 0;
rb->tail = 0;
rb->size = size;
rb->capacity = capacity;
rb->data = kmalloc(capacity * sizeof(struct msg), GFP_KERNEL);
}
```
入队的函数:
```
int enqueue(struct ring_buffer *rb, struct msg *msg) {
if ((rb->tail + 1) % rb->capacity == rb->head) {
return -1;
}
rb->data[rb->tail] = *msg;
rb->tail = (rb->tail + 1) % rb->capacity;
return 0;
}
```
出队的函数:
```
int dequeue(struct ring_buffer *rb, struct msg *msg) {
if (rb->head == rb->tail) {
return -1;
}
*msg = rb->data[rb->head];
rb->head = (rb->head + 1) % rb->capacity;
return 0;
}
```
注销队列的函数:
```
void destroy_ring_buffer(struct ring_buffer *rb) {
kfree(rb->data);
rb->data = NULL;
}
```
初始化msg结构体并放入队列的函数:
```
void init_msg(struct msg *msg, unsigned int a, unsigned int b) {
msg->module_id = 0x1;
msg->cmd_id = 0;
msg->cmd_subid = 0;
msg->complete = 0;
*(unsigned int *)(msg->data) = a;
*(unsigned int *)(msg->data + sizeof(unsigned int)) = b;
}
unsigned int process_msg(struct msg *msg) {
unsigned int a, b, c;
a = *(unsigned int *)(msg->data);
b = *(unsigned int *)(msg->data + sizeof(unsigned int));
switch (msg->cmd_id) {
case 0:
switch (msg->cmd_subid) {
case 0:
c = 1000;
*(unsigned int *)(msg->data) = c;
msg->complete = 1;
break;
default:
printk(KERN_ERR "Invalid cmd_subid\n");
break;
}
break;
default:
printk(KERN_ERR "Invalid cmd_id\n");
break;
}
return c;
}
```
在probe函数中注册队列:
```
struct ring_buffer *rb;
int probe() {
int ret;
rb = kmalloc(sizeof(struct ring_buffer), GFP_KERNEL);
if (!rb) {
printk(KERN_ERR "Failed to allocate memory\n");
return -ENOMEM;
}
init_ring_buffer(rb, 128, 10);
ret = register_chrdev(0, "queue_dev", &queue_fops);
if (ret < 0) {
printk(KERN_ERR "Failed to register device\n");
return ret;
}
return 0;
}
```
在remove函数中注销队列:
```
void remove() {
unregister_chrdev(0, "queue_dev");
destroy_ring_buffer(rb);
kfree(rb);
}
```
使用移位的方式放置和还原unsigned int类型数据:
```
unsigned int a = 0x12345678;
unsigned int b = 0x9abcdef0;
// 在msg的data数组中放置a和b
*(unsigned int *)(msg->data) = cpu_to_le32(a);
*(unsigned int *)(msg->data + sizeof(unsigned int)) = cpu_to_le32(b);
// 取出msg的data数组中的a和b并还原成unsigned int类型数据
unsigned int a = le32_to_cpu(*(unsigned int *)(msg->data));
unsigned int b = le32_to_cpu(*(unsigned int *)(msg->data + sizeof(unsigned int)));
```
阅读全文