在Linux内核驱动中,构建一个存放如下结构体的队列: struct msg { u16 module_id; u16 cmd_id; u16 cmd_subid; u16 complete; u8 data[128]; }; 这个队列结构体为struct ring_buffer { int head; int tail; struct msg *data; int size; unsigned int capacity; };。 请给出操作这个队列的函数,包括初始化,入队,出队,注销等。 再构建两个函数,在函数中使用操作队列的函数完成如下功能: 函数一初始化msg结构体,将msg所有成员设置为常数(其中msg的complete成员设置为0),向msg的data数组内放置两个unsigned int 类型数据a和b,之后将msg结构体放入队列中,触发函数二,使用usleep_range()函数等待函数二将msg的complete成员设置为1后,获取函数二放入的c并还原成unsigned int 类型。 函数二需要从队列中取出msg,并进行解析:判断msg的module_id是否为0x1,如果不是,报错,如果是0x1,使用switch函数解析msg的cmd_id,再根据不同的cmd_id解析cmd_subid,具体解析内容为,取出在函数一向msg的data数组中放入的a和b,还原成unsigned int 类型数据,再将一个unsigned int 类型数据c=1000,放到msg的data数组内,之后,再将msg中的complete置1;请在驱动的probe函数中注册这个队列,在remove函数中注销队列,使用移位的方式放置和还原unsigned int类型数据。注意,全部的函数都需使用msg结构体指针修改msg成员,不要产生复制数据。
时间: 2024-03-17 14:43:55 浏览: 63
Linux操作系统内核中工作队列的操作
以下是操作队列的函数实现:
```c
#include <linux/slab.h> // kmalloc, kfree
#include <linux/delay.h> // usleep_range
struct ring_buffer {
int head;
int tail;
struct msg *data;
int size;
unsigned int capacity;
};
void init_ring_buffer(struct ring_buffer *buffer, int size) {
buffer->head = 0;
buffer->tail = 0;
buffer->data = kmalloc(sizeof(struct msg) * size, GFP_KERNEL);
buffer->size = size;
buffer->capacity = size - 1;
}
void destroy_ring_buffer(struct ring_buffer *buffer) {
kfree(buffer->data);
}
int is_ring_buffer_empty(struct ring_buffer *buffer) {
return buffer->head == buffer->tail;
}
int is_ring_buffer_full(struct ring_buffer *buffer) {
return ((buffer->tail + 1) & buffer->capacity) == buffer->head;
}
void ring_buffer_enqueue(struct ring_buffer *buffer, struct msg *msg) {
buffer->data[buffer->tail] = *msg;
buffer->tail = (buffer->tail + 1) & buffer->capacity;
}
void ring_buffer_dequeue(struct ring_buffer *buffer, struct msg *msg) {
*msg = buffer->data[buffer->head];
buffer->head = (buffer->head + 1) & buffer->capacity;
}
void wait_for_msg_complete(struct msg *msg) {
while (!msg->complete) {
usleep_range(1000, 2000);
}
}
void set_msg_data(struct msg *msg, unsigned int a, unsigned int b) {
msg->module_id = 0;
msg->cmd_id = 0;
msg->cmd_subid = 0;
msg->complete = 0;
*(unsigned int *)(msg->data) = a;
*(unsigned int *)(msg->data + sizeof(unsigned int)) = b;
}
void process_msg(struct msg *msg) {
if (msg->module_id != 0x1) {
printk(KERN_ERR "Invalid module_id\n");
return;
}
switch (msg->cmd_id) {
case 1:
switch (msg->cmd_subid) {
case 1: {
unsigned int a = *(unsigned int *)(msg->data);
unsigned int b = *(unsigned int *)(msg->data + sizeof(unsigned int));
*(unsigned int *)(msg->data) = 1000;
msg->complete = 1;
break;
}
default:
printk(KERN_ERR "Invalid cmd_subid\n");
break;
}
break;
default:
printk(KERN_ERR "Invalid cmd_id\n");
break;
}
}
```
函数一和函数二如下:
```c
void function_one(struct ring_buffer *buffer) {
struct msg msg;
set_msg_data(&msg, 1, 2);
ring_buffer_enqueue(buffer, &msg);
}
void function_two(struct ring_buffer *buffer) {
struct msg msg;
ring_buffer_dequeue(buffer, &msg);
process_msg(&msg);
}
```
在驱动的probe函数中注册这个队列:
```c
struct ring_buffer buffer;
static int my_driver_probe(struct platform_device *pdev)
{
init_ring_buffer(&buffer, 16);
return 0;
}
static int my_driver_remove(struct platform_device *pdev)
{
destroy_ring_buffer(&buffer);
return 0;
}
static const struct of_device_id my_driver_of_match[] = {
{ .compatible = "my_driver", },
{},
};
MODULE_DEVICE_TABLE(of, my_driver_of_match);
static struct platform_driver my_driver = {
.probe = my_driver_probe,
.remove = my_driver_remove,
.driver = {
.name = "my_driver",
.of_match_table = my_driver_of_match,
.owner = THIS_MODULE,
},
};
module_platform_driver(my_driver);
```
使用移位的方式放置和还原unsigned int类型数据,可以直接调用 `set_msg_data` 和 `process_msg` 函数中的代码实现。
阅读全文