rf = RandomForestRegressor(n_estimators=100,random_state=42) rf.fit(X_train, y_train) y_pred_rf = rf.predict(X_test)
时间: 2023-12-24 18:25:48 浏览: 116
这段代码是用随机森林算法建立一个回归模型,并使用该模型对测试数据进行预测。其中,n_estimators表示建立的决策树的数量,random_state是随机数生成器的种子,X_train和y_train分别表示训练数据的自变量和因变量,X_test是测试数据的自变量,y_pred_rf是模型对测试数据的因变量的预测值。
相关问题
from sklearn.ensemble import RandomForestRegressor rf=RandomForestRegressor(n_estimators=200,random_state=0) #rf.fit(X_train, y_train) rf.fit(X_train, y_train) y_train_pred=rf.predict(X_train) y_test_pred=rf.predict(X_test) print(y_test_pred)
这段代码中,首先从sklearn.ensemble库中导入RandomForestRegressor类,并创建了一个名为rf的实例。
然后调用rf的fit方法来拟合训练集,其中传入X_train和y_train作为参数。
接下来分别使用rf的predict方法来对训练集和测试集进行预测,将预测结果分别赋值给y_train_pred和y_test_pred。
最后输出y_test_pred的值。由于缺少上下文,无法判断y_test_pred的输出结果是否有意义。
X=dataset.iloc[:,2:-1] y=dataset.iloc[:,1] print(dataset.shape) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=0) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train =sc.fit_transform(X_train) X_test= sc.transform(X_test) from sklearn.ensemble import RandomForestRegressor rf=RandomForestRegressor(n_estimators=200,random_state=0) #rf.fit(X_train, y_train) #拟合训练集 rf.fit(X_train, y_train) #对训练集和测试集进行预测 y_train_pred=rf.predict(X_train) y_test_pred=rf.predict(X_test) print(y_test_pred)
这段代码的作用是使用随机森林算法对一个数据集进行回归分析。首先,将数据集分为自变量(X)和因变量(y),然后使用train_test_split函数将数据集分为训练数据集和测试数据集。接着,使用StandardScaler函数对自变量进行标准化处理,使得数据分布更加符合正态分布。最后,使用RandomForestRegressor函数建立随机森林回归模型,并对训练集和测试集进行预测,并将预测结果输出。
阅读全文