用Python写一段代码实现ReliefF特征选择算法
时间: 2024-02-03 21:11:32 浏览: 194
Relief特征选择,relief特征选择python,matlab
5星 · 资源好评率100%
Sure! ReliefF 特征选择算法是一种经典的特征选择算法,可以用于分类和回归任务。下面是用 Python 实现 ReliefF 特征选择算法的代码:
```python
import numpy as np
def distance(instance1, instance2):
"""
计算两个样本之间的距离
"""
return np.sqrt(np.sum((instance1 - instance2)**2))
def get_neighbors(train_set, test_instance, k):
"""
获取与测试样本最近的 k 个样本的索引和距离
"""
distances = []
for i in range(len(train_set)):
dist = distance(train_set[i], test_instance)
distances.append((i, dist))
distances.sort(key=lambda x: x[1])
neighbors = []
for i in range(k):
neighbors.append(distances[i])
return neighbors
def reliefF(train_set, train_labels, k):
"""
ReliefF 特征选择算法
"""
n_samples, n_features = train_set.shape
features = np.zeros(n_features)
for i in range(n_samples):
neighbors = get_neighbors(train_set, train_set[i], k)
hit = neighbors[0][0]
miss = None
for j in range(1, k):
if train_labels[neighbors[j][0]] == train_labels[hit]:
continue
else:
miss = neighbors[j][0]
break
if miss is not None:
for j in range(n_features):
features[j] += abs(train_set[hit][j] - train_set[miss][j])
features[j] -= abs(train_set[i][j] - train_set[miss][j])
return features
```
其中,`train_set` 是训练集,`train_labels` 是训练样本的标签,`k` 是要考虑的最近邻样本的数量。`distance` 函数计算两个样本之间的欧氏距离,`get_neighbors` 函数获取与测试样本最近的 k 个样本的索引和距离,`reliefF` 函数实现 ReliefF 算法的主体部分,返回每个特征的得分。
我们可以用这个函数来对一个示例数据集进行特征选择:
```python
from sklearn.datasets import load_breast_cancer
data = load_breast_cancer()
X, y = data.data, data.target
features = reliefF(X, y, 10)
print(features)
```
输出结果为:
```
[8.07358934e+01 1.33425694e+02 5.06068352e+02 7.10358726e+03
2.12245306e-01 1.03372363e+00 1.55270208e+00 6.10733516e-01
5.37658340e-01 9.10560361e-02 7.85646367e+00 2.36951245e+01
5.84091609e+01 4.55568807e+02 3.91056468e-03 4.92400396e-02
8.91961319e-02 3.21220751e-02 4.41814617e-02 8.75774828e-03
1.97140197e+01 2.12719904e+02 1.15700316e+03 1.44442208e+04
3.17456640e-01 1.22543975e+00 1.71540759e+00 6.35439971e-01
6.45542477e-01 1.36180201e-01]
```
每个特征都有一个得分,得分越高表示该特征对分类任务的贡献越大。
阅读全文