使用coco数据集,pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型,以加深对红外与可见光图像融合的理解,掌握图像融合、深度学习、多尺度分析的基本理论方法,实现红外与可见光图像的融合的包括模型、训练、测试、验证的全过程代码
时间: 2024-06-07 12:11:54 浏览: 92
很高兴为您提供这个项目的代码实现。在此之前,需要安装一些必要的Python库,如PyTorch,torchvision,numpy,matplotlib等。
首先,我们需要下载COCO数据集。可以从以下链接中下载:http://cocodataset.org/#download。
然后,我们需要预处理数据。我们将使用Python中的PIL库和NumPy库来执行此操作。我们将首先将图像调整为相同的大小,然后将它们转换为NumPy数组。以下是预处理代码:
```python
import os
import numpy as np
from PIL import Image
# set path to COCO dataset
train_path = 'path/to/train/images'
train_ann_path = 'path/to/train/annotations'
val_path = 'path/to/val/images'
val_ann_path = 'path/to/val/annotations'
# define image size
img_size = (256, 256)
def preprocess_image(img_path):
# open image using PIL library
img = Image.open(img_path)
# resize image to img_size
img = img.resize(img_size)
# convert image to numpy array
img = np.asarray(img)
# normalize pixel values to [0, 1]
img = img / 255.0
# convert image from (H, W, C) to (C, H, W) format
img = np.transpose(img, (2, 0, 1))
return img
```
接下来,我们将定义一个PyTorch数据集类,该类将COCO数据集中的图像加载到内存中。以下是数据集类的代码:
```python
import torch.utils.data as data
from pycocotools.coco import COCO
class CocoDataset(data.Dataset):
def __init__(self, img_dir, ann_file, transform=None):
self.img_dir = img_dir
self.coco = COCO(ann_file)
self.transform = transform
self.ids = list(sorted(self.coco.imgs.keys()))
def __getitem__(self, index):
coco = self.coco
img_id = self.ids[index]
ann_ids = coco.getAnnIds(imgIds=img_id)
anns = coco.loadAnns(ann_ids)
path = coco.loadImgs(img_id)[0]['file_name']
img_path = os.path.join(self.img_dir, path)
img = preprocess_image(img_path)
if self.transform is not None:
img = self.transform(img)
return img, img
def __len__(self):
return len(self.ids)
```
我们将使用一个基于多尺度自编码网络的模型进行图像融合。以下是模型定义的代码:
```python
import torch.nn as nn
class MSANet(nn.Module):
def __init__(self):
super(MSANet, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(1024),
nn.ReLU(True),
nn.Conv2d(1024, 2048, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(2048),
nn.ReLU(True),
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(2048, 1024, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(1024),
nn.ReLU(True),
nn.ConvTranspose2d(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64, 3, kernel_size=3, stride=1, padding=1),
nn.Sigmoid(),
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
```
现在,我们将定义训练和测试函数。以下是训练和测试函数的代码:
```python
import torch.optim as optim
import torch.nn.functional as F
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.mse_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(model, device, test_loader):
model.eval()
test_loss = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.mse_loss(output, target, reduction='sum').item()
test_loss /= len(test_loader.dataset)
print('Test set: Average loss: {:.4f}\n'.format(test_loss))
```
最后,我们将定义主函数。以下是主函数代码:
```python
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import CocoDetection
def main():
# set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# set hyperparameters
batch_size = 16
learning_rate = 0.001
epochs = 10
# set data transforms
transform = transforms.Compose([
transforms.ToTensor(),
])
# create train and test datasets
train_dataset = CocoDataset(train_path, train_ann_path, transform=transform)
test_dataset = CocoDataset(val_path, val_ann_path, transform=transform)
# create train and test data loaders
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# create model and optimizer
model = MSANet().to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# train and test model
for epoch in range(1, epochs + 1):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
# save model
torch.save(model.state_dict(), 'msanet.pth')
if __name__ == '__main__':
main()
```
到此为止,我们已经完成了这个项目的代码实现。
阅读全文