CNN卷积神经网络人脸识别 python代码
时间: 2023-07-22 20:42:27 浏览: 37
好的,以下是一个基于Python和Keras框架实现的CNN卷积神经网络人脸识别代码示例:
```python
# 导入必要的库
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import np_utils
from keras.datasets import mnist
from keras import backend as K
from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing import image
# 定义数据集相关参数
batch_size = 128
num_classes = 2
epochs = 10
img_rows, img_cols = 28, 28
input_shape = (img_rows, img_cols, 3)
# 加载数据集
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'train',
target_size=(img_rows, img_cols),
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
'test',
target_size=(img_rows, img_cols),
batch_size=batch_size,
class_mode='categorical')
# 构建CNN模型
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# 训练模型
model.fit_generator(
train_generator,
steps_per_epoch=2000 // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=800 // batch_size)
# 预测新图像
img_path = 'test/cat/cat.1.jpg'
img = image.load_img(img_path, target_size=(img_rows, img_cols))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
preds = model.predict_classes(x)
print('预测结果:', preds[0])
```
这是一个简单的人脸识别例子,其中使用了一个2层的CNN卷积神经网络模型,并且使用Keras提供的ImageDataGenerator来加载和处理数据集。你可以将此代码作为一个起点,并进行修改以满足你的具体需求。
相关推荐
















