import networkx as nx import random # 读入edge文件,构建图结构 graph = {} with open("./edge/football.edge", "r") as f: for line in f: u, v = line.strip().split() if u not in graph: graph[u] = [] if v not in graph: graph[v] = [] graph[u].append(v) graph[v].append(u) # 随机选择一个节点作为感染源 infected = random.choice(list(graph.keys())) print("Infected node:", infected) # 初始化每个节点的感染状态 status = {} for node in graph: status[node] = "S" status[infected] = "I" # SI模型参数 p = 0.5 # 感染过程 while True: changed = False for node in graph: if status[node] == "I": for neighbor in graph[node]: if status[neighbor] == "S" and random.random() < p: status[neighbor] = "I" changed = True if not changed: break # 输出每个节点的感染状态和邻居 for node in graph: print(node, status[node], graph[node])续写一个加入观测节点的溯源代码并可视化

时间: 2023-11-22 22:52:32 浏览: 32
import networkx as nx import random import matplotlib.pyplot as plt # 读入edge文件,构建图结构 graph = {} with open("./edge/football.edge", "r") as f: for line in f: u, v = line.strip().split() if u not in graph: graph[u] = [] if v not in graph: graph[v] = [] graph[u].append(v) graph[v].append(u) # 随机选择一个节点作为感染源 infected = random.choice(list(graph.keys())) print("Infected node:", infected) # 初始化每个节点的感染状态 status = {} for node in graph: status[node] = "S" status[infected] = "I" # SI模型参数 p = 0.5 # 记录观测节点和感染源之间的路径 paths = {} # 感染过程 while True: changed = False for node in graph: if status[node] == "I": for neighbor in graph[node]: if status[neighbor] == "S" and random.random() < p: status[neighbor] = "I" paths[neighbor] = node # 记录路径 changed = True if not changed: break # 输出每个节点的感染状态和邻居 for node in graph: print(node, status[node], graph[node]) # 可视化 plt.figure(figsize=(10, 10)) pos = nx.spring_layout(graph) colors = [] for node in graph: if status[node] == "S": colors.append("green") else: colors.append("red") nx.draw_networkx_nodes(graph, pos, node_color=colors, node_size=500) nx.draw_networkx_edges(graph, pos) nx.draw_networkx_labels(graph, pos, font_size=12, font_family="sans-serif") nx.draw_networkx_edges(graph, pos, edgelist=[(infected, paths[node]) for node in paths], edge_color="blue", width=2) plt.axis("off") plt.show()

相关推荐

import networkx as nx from neo4j import GraphDatabase from torch_geometric.data import Data # Connect to Neo4j database driver = GraphDatabase.driver(uri, auth=(username, password)) # Define a Cypher query to retrieve nodes and relationships from Neo4j query = """ MATCH (n)-[r]->(m) RETURN id(n) AS source, id(m) AS target, type(r) AS edge_type, labels(n) AS source_labels, labels(m) AS target_labels, properties(n) AS source_props, properties(m) AS target_props """ # Execute the query and retrieve the results with driver.session() as session: results = session.run(query) # Convert the query results to a NetworkX graph graph = nx.MultiDiGraph() for record in results: graph.add_edge(record['source'], record['target'], key=record['edge_type'], source_labels=record['source_labels'], target_labels=record['target_labels'], source_props=record['source_props'], target_props=record['target_props']) # Convert the NetworkX graph to a PyTorch Geometric Data object x = [] edge_index = [] edge_attr = [] for node in graph.nodes(): node_attrs = [] for label in graph.nodes[node]['labels']: node_attrs.append(label) for prop in graph.nodes[node]['source_props']: node_attrs.append(prop) x.append(node_attrs) for source, target, data in graph.edges(keys=True, data=True): edge_index.append([source, target]) edge_attrs = [] for label in data['source_labels']: edge_attrs.append(label) for prop in data['properties']: edge_attrs.append(prop) edge_attr.append(edge_attrs) data = Data(x=torch.tensor(x), edge_index=torch.tensor(edge_index).t().contiguous(), edge_attr=torch.tensor(edge_attr))详细注释

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。