G_tmp = nx.read_edgelist('../input/google-web-graph/web-Google.txt', create_using = nx.DiGraph)啥意思
时间: 2024-03-27 19:42:05 浏览: 114
这段代码使用 NetworkX 库中的 `read_edgelist` 函数从指定路径的文件中读取边列表,并创建一个有向图对象 `G_tmp`。其中,`'../input/google-web-graph/web-Google.txt'` 是文件路径,`create_using = nx.DiGraph` 表示创建一个有向图对象。这段代码的作用是将文件中的边列表读入内存,以便后续进行图分析和处理。
相关问题
将这两个代码结合import cv2 import numpy as np import urllib.request import tensorflow as tf # 下载DeepLabv3+模型权重文件 model_url = "http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz" tar_filename = "deeplabv3_mnv2_pascal_train_aug.tar.gz" urllib.request.urlretrieve(model_url, tar_filename) # 解压缩 with tarfile.open(tar_filename, "r:gz") as tar: tar.extractall() model_filename = "deeplabv3_mnv2_pascal_train_aug/frozen_inference_graph.pb" # 加载模型 graph = tf.Graph() with graph.as_default(): od_graph_def = tf.GraphDef() with tf.io.gfile.GFile(model_filename, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') # 读取图像 image_path = "your_image.jpg" image = cv2.imread(image_path) # 进行图像分割 with tf.compat.v1.Session(graph=graph) as sess: input_tensor = graph.get_tensor_by_name('ImageTensor:0') output_tensor = graph.get_tensor_by_name('SemanticPredictions:0') output = sess.run(output_tensor, feed_dict={input_tensor: image}) # 解码并可视化分割结果 segmentation_mask = np.squeeze(output) segmentation_mask = np.uint8(segmentation_mask) segmentation_mask = cv2.resize(segmentation_mask, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST) # 显示原始图像和分割结果 cv2.imshow("Image", image) cv2.imshow("Segmentation Mask", segmentation_mask) cv2.waitKey(0) cv2.destroyAllWindows() model1 = models.CellposeModel(gpu=True, model_type='livecell') model2 = models.Cellpose(gpu=True,model_type='nuclei') model3= models.Cellpose(gpu=True,model_type='cyto2') 集成DeepLabv3+模型和cellpose模型
要将DeepLabv3+模型和Cellpose模型集成,你可以按照以下步骤进行修改:
```python
import cv2
import numpy as np
import urllib.request
import tensorflow as tf
from cellpose import models
# 下载DeepLabv3+模型权重文件
model_url = "http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz"
tar_filename = "deeplabv3_mnv2_pascal_train_aug.tar.gz"
urllib.request.urlretrieve(model_url, tar_filename)
# 解压缩
with tarfile.open(tar_filename, "r:gz") as tar:
tar.extractall()
model_filename = "deeplabv3_mnv2_pascal_train_aug/frozen_inference_graph.pb"
# 加载DeepLabv3+模型
graph = tf.Graph()
with graph.as_default():
od_graph_def = tf.GraphDef()
with tf.io.gfile.GFile(model_filename, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# 加载Cellpose模型
model1 = models.CellposeModel(gpu=True, model_type='livecell')
model2 = models.CellposeModel(gpu=True, model_type='nuclei')
model3 = models.CellposeModel(gpu=True, model_type='cyto2')
# 读取图像
image_path = "your_image.jpg"
image = cv2.imread(image_path)
# 进行图像分割(DeepLabv3+模型)
with tf.compat.v1.Session(graph=graph) as sess:
input_tensor = graph.get_tensor_by_name('ImageTensor:0')
output_tensor = graph.get_tensor_by_name('SemanticPredictions:0')
output = sess.run(output_tensor, feed_dict={input_tensor: image})
# 解码并可视化分割结果(DeepLabv3+模型)
segmentation_mask = np.squeeze(output)
segmentation_mask = np.uint8(segmentation_mask)
segmentation_mask = cv2.resize(segmentation_mask, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
# 进行图像分割(Cellpose模型)
masks1, _, _, _ = model1.eval(image)
masks2, _, _, _ = model2.eval(image)
masks3, _, _, _ = model3.eval(image)
# 可视化结果
cv2.imshow("Original Image", image)
cv2.imshow("Segmentation Mask (DeepLabv3+)", segmentation_mask)
cv2.imshow("Cell Masks (Model 1)", masks1)
cv2.imshow("Cell Masks (Model 2)", masks2)
cv2.imshow("Cell Masks (Model 3)", masks3)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这样,你就可以同时使用DeepLabv3+模型和Cellpose模型进行图像分割和细胞分割了。请注意,你需要根据你的需求进行适当的调整和修改。
希望这可以帮助到你!如果还有其他问题,请随时告诉我。
如果不用创建新图,而是根据之前通过代码G = nx.from_pandas_edgelist(df, 'source', 'target','weight', create_using = nx.DiGraph())已导入的数据计算,应该怎么修改呢
如果你已经通过`nx.from_pandas_edgelist`方法将数据导入为图,那么可以直接使用该图进行计算,而无需创建新图。你可以按照以下方式修改代码:
```python
import networkx as nx
def calculate_yi(graph):
yi_values = {}
for node in graph.nodes:
yi = 0
for neighbor in graph.neighbors(node):
wij = graph[node][neighbor]['weight']
si = graph.nodes[node]['strength']
yi += (wij / si) ** 2
yi_values[node] = yi
return yi_values
# 假设你已经通过nx.from_pandas_edgelist方法导入了图数据为G
# 添加节点的强度属性
G.nodes[1]['strength'] = 1.2
G.nodes[2]['strength'] = 0.9
G.nodes[3]['strength'] = 1.5
G.nodes[4]['strength'] = 1.0
# 计算所有yi值
yi_values = calculate_yi(G)
print(yi_values)
```
在这个修改的代码中,我们假设你已经通过`nx.from_pandas_edgelist`方法将数据导入为了图`G`。然后,我们在图的节点上添加了强度属性,并调用`calculate_yi`函数计算所有的yi值。最后,我们打印输出了所有的yi值。请确保在运行代码之前,已经正确导入了图数据。
阅读全文