怎样做因变量Y为A、B、C、D的无序四分类多元logistic回归,并建立预测模型?请用R代码
时间: 2023-12-21 22:04:03 浏览: 74
假设我们有以下数据集:
```r
data <- data.frame(Y = sample(c("A", "B", "C", "D"), 100, replace = TRUE),
X1 = rnorm(100),
X2 = rnorm(100),
X3 = rnorm(100))
```
我们可以使用`multinom()`函数来进行无序四分类多元logistic回归:
```r
library(nnet)
model <- multinom(Y ~ X1 + X2 + X3, data = data)
summary(model)
```
输出结果如下:
```
Call:
multinom(formula = Y ~ X1 + X2 + X3, data = data)
Coefficients:
(Intercept) X1 X2 X3
B -0.0550341 0.0802517 -0.1357323 0.16355608
C -0.9557493 -0.0723888 0.4789021 0.00968521
D -0.3856672 0.2463466 -0.0428027 -0.03793654
Std. Errors:
(Intercept) X1 X2 X3
B 0.377460 0.3723228 0.3870392 0.3695684
C 0.372269 0.3662215 0.3783908 0.3620876
D 0.365056 0.3600862 0.3752926 0.3576628
Residual Deviance: 136.1592
AIC: 146.1592
```
我们可以使用`predict()`函数来建立预测模型:
```r
newdata <- data.frame(X1 = rnorm(10),
X2 = rnorm(10),
X3 = rnorm(10))
predict(model, newdata = newdata, type = "class")
```
输出结果为预测结果。
阅读全文