local_parameters = myClients.clients_set[client].localUpdate(args['epoch'], args['batchsize'], net,loss_func, opti, global_parameters)是什么意思,这个函数的参数是什么

时间: 2023-05-27 22:06:57 浏览: 42
这行代码的意思是,调用名为"localUpdate"的方法,从myClients对象的client索引处的客户端中获取本地参数,并在本地更新这些参数,使用给定的epoch、batchsize、网络模型、损失函数、优化器和全局参数。最后返回更新后的本地参数。 该函数的参数是: - epoch: 整数型,表示训练的迭代次数。 - batchsize: 整数型,表示每次训练使用的数据批次大小。 - net: 神经网络模型,通常为PyTorch中的nn.Module对象。 - loss_func: 损失函数,通常为PyTorch中的损失函数对象。 - opti: 优化器,通常为PyTorch中的优化器对象,用于更新神经网络的参数。 - global_parameters: 全局参数,通常为PyTorch中的张量对象,表示全局共享的参数。
相关问题

def dataSetBalanceAllocation(self): mnistDataSet = GetDataSet(self.data_set_name, self.is_iid) test_data = torch.tensor(mnistDataSet.test_data) test_label = torch.argmax(torch.tensor(mnistDataSet.test_label), dim=1) self.test_data_loader = DataLoader(TensorDataset( test_data, test_label), batch_size=100, shuffle=False) train_data = mnistDataSet.train_data train_label = mnistDataSet.train_label shard_size = mnistDataSet.train_data_size // self.num_of_clients // 2 shards_id = np.random.permutation(mnistDataSet.train_data_size // shard_size) #permutation:排列 for i in range(self.num_of_clients): shards_id1 = shards_id[i * 2] shards_id2 = shards_id[i * 2 + 1] data_shards1 = train_data[shards_id1 * shard_size: shards_id1 * shard_size + shard_size] data_shards2 = train_data[shards_id2 * shard_size: shards_id2 * shard_size + shard_size] label_shards1 = train_label[shards_id1 * shard_size: shards_id1 * shard_size + shard_size] label_shards2 = train_label[shards_id2 * shard_size: shards_id2 * shard_size + shard_size] local_data, local_label = np.vstack((data_shards1, data_shards2)), np.vstack((label_shards1, label_shards2)) # vstack:data和label拼接 local_label = np.argmax(local_label, axis=1) someone = client(TensorDataset(torch.tensor(local_data), torch.tensor(local_label)), self.dev) self.clients_set['client{}'.format(i)] = someone 解释这段代码

这段代码是一个类中的方法`dataSetBalanceAllocation()`。该方法用于对数据集进行平衡分配给多个客户端。 首先,通过调用`GetDataSet()`函数获取`mnistDataSet`数据集对象。然后,将测试数据和测试标签转换为张量,并使用`DataLoader`创建一个测试数据加载器,每个批次大小为100,不打乱顺序。 接下来,将训练数据和训练标签存储在`train_data`和`train_label`中。然后,计算每个客户端的数据分片大小,即`shard_size`,它是训练数据总量除以客户端数量除以2(因为每个客户端获取两个分片)。 通过使用`np.random.permutation()`函数对`mnistDataSet.train_data_size // shard_size`进行排列,得到一个随机的分片索引数组`shards_id`。 接下来,使用循环为每个客户端分配数据。在每次迭代中,通过索引数组`shards_id`获取两个分片的索引`shards_id1`和`shards_id2`。然后,通过这些索引从训练数据和标签中选择对应的数据分片。将这些分片堆叠起来,形成本地的数据和标签,并将其封装为`TensorDataset`对象。 然后,创建一个名为`someone`的客户端对象,该对象是使用上述本地数据和标签创建的。将该客户端对象添加到`self.clients_set`字典中,键为`'client{}'.format(i)`。 通过这样的操作,数据集被平衡地分配给了多个客户端,每个客户端都有两个数据分片。你可以通过访问`self.clients_set`来访问每个客户端的数据和标签。

f = plt.figure(figsize=(12, 7)) f.suptitle('Label Counts for a Sample of Clients') for i in range(6): client_dataset = dataset.shuffle(buffer_size=len(train_images)) client_dataset = dataset.batch(batch_size=10) example = next(iter(client_dataset)) label = example['label'].numpy() unique_values, value_counts = np.unique(label, return_counts=True) plt.bar(unique_values, value_counts) plt.title('Client {}'.format(i)) plt.show()该段代码中如何修改实现使得输出的直方图呈现2*3的排列

把for循环中的i变量改为两个变量row和col,表示行和列的数量,然后用嵌套的for循环输出直方图,并在外层循环前面添加subplot方法,修改后的代码如下: ``` f = plt.figure(figsize=(12, 7)) f.suptitle('Label Counts for a Sample of Clients') row = 2 col = 3 for i in range(row * col): client_dataset = dataset.shuffle(buffer_size=len(train_images)) client_dataset = dataset.batch(batch_size=10) example = next(iter(client_dataset)) label = example['label'].numpy() unique_values, value_counts = np.unique(label, return_counts=True) plt.subplot(row, col, i+1) plt.bar(unique_values, value_counts) plt.title('Client {}'.format(i)) plt.show() ```

相关推荐

def draw_stats(self, vals, vals1, vals2, vals3, vals4, vals5, vals6): self.ax1 = plt.subplot(self.gs[0, 0]) self.ax1.plot(vals) self.ax1.set_xlim(self.xlim) locs = self.ax1.get_xticks() locs[0] = self.xlim[0] locs[-1] = self.xlim[1] self.ax1.set_xticks(locs) self.ax1.use_sticky_edges = False self.ax1.set_title(f'Connected Clients Ratio') self.ax2 = plt.subplot(self.gs[1, 0]) self.ax2.plot(vals1) self.ax2.set_xlim(self.xlim) self.ax2.set_xticks(locs) self.ax2.yaxis.set_major_formatter(FuncFormatter(format_bps)) self.ax2.use_sticky_edges = False self.ax2.set_title('Total Bandwidth Usage') self.ax3 = plt.subplot(self.gs[2, 0]) self.ax3.plot(vals2) self.ax3.set_xlim(self.xlim) self.ax3.set_xticks(locs) self.ax3.use_sticky_edges = False self.ax3.set_title('Bandwidth Usage Ratio in Slices (Averaged)') self.ax4 = plt.subplot(self.gs[3, 0]) self.ax4.plot(vals3) self.ax4.set_xlim(self.xlim) self.ax4.set_xticks(locs) self.ax4.use_sticky_edges = False self.ax4.set_title('Client Count Ratio per Slice') self.ax5 = plt.subplot(self.gs[0, 1]) self.ax5.plot(vals4) self.ax5.set_xlim(self.xlim) self.ax5.set_xticks(locs) self.ax5.use_sticky_edges = False self.ax5.set_title('Coverage Ratio') self.ax6 = plt.subplot(self.gs[1, 1]) self.ax6.plot(vals5) self.ax6.set_xlim(self.xlim) self.ax6.set_xticks(locs) self.ax6.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) self.ax6.use_sticky_edges = False self.ax6.set_title('Block ratio') self.ax7 = plt.subplot(self.gs[2, 1]) self.ax7.plot(vals6) self.ax7.set_xlim(self.xlim) self.ax7.set_xticks(locs) self.ax7.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) self.ax7.use_sticky_edges = False self.ax7.set_title('Handover ratio')修改为一张张输出图片

def draw_stats(self, vals, vals1, vals2, vals3, vals4, vals5, vals6): self.ax1 = plt.subplot(self.gs[0, 0]) self.ax1.plot(vals) self.ax1.set_xlim(self.xlim) locs = self.ax1.get_xticks() locs[0] = self.xlim[0] locs[-1] = self.xlim[1] self.ax1.set_xticks(locs) self.ax1.use_sticky_edges = False self.ax1.set_title(f'Connected Clients Ratio') self.ax2 = plt.subplot(self.gs[1, 0]) self.ax2.plot(vals1) self.ax2.set_xlim(self.xlim) self.ax2.set_xticks(locs) self.ax2.yaxis.set_major_formatter(FuncFormatter(format_bps)) self.ax2.use_sticky_edges = False self.ax2.set_title('Total Bandwidth Usage') self.ax3 = plt.subplot(self.gs[2, 0]) self.ax3.plot(vals2) self.ax3.set_xlim(self.xlim) self.ax3.set_xticks(locs) self.ax3.use_sticky_edges = False self.ax3.set_title('Bandwidth Usage Ratio in Slices (Averaged)') self.ax4 = plt.subplot(self.gs[3, 0]) self.ax4.plot(vals3) self.ax4.set_xlim(self.xlim) self.ax4.set_xticks(locs) self.ax4.use_sticky_edges = False self.ax4.set_title('Client Count Ratio per Slice') self.ax5 = plt.subplot(self.gs[0, 1]) self.ax5.plot(vals4) self.ax5.set_xlim(self.xlim) self.ax5.set_xticks(locs) self.ax5.use_sticky_edges = False self.ax5.set_title('Coverage Ratio') self.ax6 = plt.subplot(self.gs[1, 1]) self.ax6.plot(vals5) self.ax6.set_xlim(self.xlim) self.ax6.set_xticks(locs) self.ax6.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) self.ax6.use_sticky_edges = False self.ax6.set_title('Block ratio') self.ax7 = plt.subplot(self.gs[2, 1]) self.ax7.plot(vals6) self.ax7.set_xlim(self.xlim) self.ax7.set_xticks(locs) self.ax7.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) self.ax7.use_sticky_edges = False self.ax7.set_title('Handover ratio') self.ax8 = plt.subplot(self.gs[3, 1]) row_labels = [ 'Initial number of clients', 'Average connected clients', 'Average bandwidth usage', 'Average load factor of slices', 'Average coverage ratio', 'Average block ratio', 'Average handover ratio', ] l, r = self.xlim cell_text = [ [f'{len(self.clients)}'], [f'{mean(vals[l:r]):.2f}'], [f'{format_bps(mean(vals1[l:r]), return_float=True)}'], [f'{mean(vals2[l:r]):.2f}'], [f'{mean(vals4[l:r]):.2f}'], [f'{mean(vals5[l:r]):.4f}'], [f'{mean(vals6[l:r]):.4f}'], ] self.ax8.axis('off') self.ax8.axis('tight') self.ax8.tick_params(axis='x', which='major', pad=15) self.ax8.table(cellText=cell_text, rowLabels=row_labels, colWidths=[0.35, 0.2], loc='center right') plt.tight_layout() 更改为只输出其中的第一行第一列的图片

最新推荐

recommend-type

6-10.py

6-10
recommend-type

基于机器学习的入侵检测系统+源码+说明.zip

基于机器学习的入侵检测系统+源码+说明.zip
recommend-type

matlab基于潜在低秩表示的红外与可见光图像融合.zip

matlab基于潜在低秩表示的红外与可见光图像融合.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这