Transferred 738/745 items from yolov5x.pt AMP: checks passed optimizer: SGD(lr=0.01) with parameter groups 123 weight(decay=0.0), 126 weight(decay=0.0005), 126 bias Traceback (most recent call last): File "C:\Users\admin\Desktop\yolov5-master (1)\yolov5-master\utils\dataloaders.py", line 481, in __init__ assert self.im_files, f'{prefix}No images found' AssertionError: train: No images found The above exception was the direct cause of the following exception: Traceback (most recent call last): File "C:\Users\admin\Desktop\yolov5-master (1)\yolov5-master\train.py", line 648, in <module> main(opt) File "C:\Users\admin\Desktop\yolov5-master (1)\yolov5-master\train.py", line 537, in main train(opt.hyp, opt, device, callbacks) File "C:\Users\admin\Desktop\yolov5-master (1)\yolov5-master\train.py", line 196, in train train_loader, dataset = create_dataloader(train_path, File "C:\Users\admin\Desktop\yolov5-master (1)\yolov5-master\utils\dataloaders.py", line 124, in create_dataloader dataset = LoadImagesAndLabels( File "C:\Users\admin\Desktop\yolov5-master (1)\yolov5-master\utils\dataloaders.py", line 483, in __init__ raise Exception(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e Exception: train: Error loading data from C:\Users\admin\Desktop\yolov5-master (1)\yolov5-master\wzry\datasets\labels\train: train: No images found See https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
时间: 2023-07-22 11:12:59 浏览: 348
根据错误信息显示,训练过程中出现了找不到图像的问题。请确保在指定的路径下存在训练图像。您可以检查以下几点:
1. 检查训练图像的路径是否正确:C:\Users\admin\Desktop\yolov5-master (1)\yolov5-master\wzry\datasets\labels\train
2. 确保在该路径下存在图像文件。您可以检查一下该路径下是否有图像文件。
如果路径和文件都正确,但仍然出现问题,请确保图像文件格式正确,并且每个图像都有对应的标签文件。此外,还可以检查一下图像和标签文件的命名是否匹配。
如果问题仍然存在,请提供更多的信息和代码上下文,以便更好地帮助您解决问题。
相关问题
yolov5x.pt
对于您的问题,我没有找到与"yolov5x.pt"相关的引用内容。请问您有关于"yolov5x.pt"的具体问题吗?我将尽力回答您的问题。
#### 引用[.reference_title]
- *1* *3* [YOLOv5训练步骤](https://blog.csdn.net/qq_41496108/article/details/111034207)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [YOLOv5 开始训练时卡住不动了Transferred 548/613 items from /root/autodl-tmp/yolov5l.pt](https://blog.csdn.net/weixin_46135327/article/details/131100597)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
Transferred 354/362 items from weights/yolov5s.pt Scaled weight_decay = 0.0005 Optimizer groups: 62 .bias, 62 conv.weight, 59 other Traceback (most recent call last): File "F:\Desktop\yolov5-5.0\train.py", line 543, in <module> train(hyp, opt, device, tb_writer) File "F:\Desktop\yolov5-5.0\train.py", line 189, in train dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, File "F:\Desktop\yolov5-5.0\utils\datasets.py", line 63, in create_dataloader dataset = LoadImagesAndLabels(path, imgsz, batch_size, File "F:\Desktop\yolov5-5.0\utils\datasets.py", line 385, in __init__ cache, exists = torch.load(cache_path), True # load File "D:\Anaconda3 2023.03-1\envs\pytorch\lib\site-packages\torch\serialization.py", line 815, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "D:\Anaconda3 2023.03-1\envs\pytorch\lib\site-packages\torch\serialization.py", line 1033, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args) _pickle.UnpicklingError: STACK_GLOBAL requires str
根据你提供的错误信息,看起来是在加载数据集时出现了一个 `_pickle.UnpicklingError: STACK_GLOBAL requires str` 的错误。这个错误通常是由于 Python 版本不兼容或者数据集文件损坏导致的。
你可以尝试以下解决方法:
1. 确保你的 Python 版本与项目要求的版本兼容。检查项目的文档或要求文件,查看所需的 Python 版本。
2. 如果你正在使用虚拟环境,请确保已经激活了正确的环境。你可以使用 `conda activate <env_name>`(对于 Anaconda)或者 `source <env_name>/bin/activate`(对于 venv)来激活环境。
3. 尝试重新下载或更新数据集文件。如果数据集文件损坏或不完整,会导致加载时出现错误。可以从可靠的来源重新下载数据集,并确保文件完整。
如果以上方法仍然无法解决问题,请提供更多的上下文信息,例如你使用的 Python 版本、项目的详细说明等,以便我能够更好地帮助你解决问题。
阅读全文