如何获取linearregression得到判定系数
时间: 2024-05-03 14:23:06 浏览: 131
在使用linear regression进行拟合后,可以使用sklearn中的r2_score函数来获取判定系数。具体方法如下:
1. 导入sklearn库中的linear_model和metrics模块:
```python
from sklearn import linear_model
from sklearn import metrics
```
2. 定义linear regression模型并进行拟合:
```python
reg = linear_model.LinearRegression()
reg.fit(X_train, y_train)
```
其中,X_train和y_train分别是训练集的自变量和因变量。
3. 使用r2_score函数计算判定系数:
```python
y_pred = reg.predict(X_test)
r2_score = metrics.r2_score(y_test, y_pred)
print('r2_score:', r2_score)
```
其中,X_test和y_test分别是测试集的自变量和因变量,y_pred是模型预测出的因变量。r2_score函数的第一个参数是真实值,第二个参数是预测值。计算出的r2_score即为判定系数。
相关问题
jupter计算判定系数
Jupyter Notebook并不是直接用于计算判定系数(R-squared),这是统计学中衡量回归模型拟合度的一个指标。通常在Python中,我们会使用像是`statsmodels`库中的`linregress()`函数来进行线性回归并计算R-squared,或者使用`sklearn.metrics.r2_score()`来自`scikit-learn`库。
例如,假设我们有一个数据集和对应的自变量x和因变量y,可以这样计算:
```python
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
# 假设df是一个包含'X'和'y'列的数据框
X = df['X'].values.reshape(-1, 1)
y = df['Y'].values.reshape(-1, 1)
# 使用statsmodels进行计算
model = sm.OLS(y, X).fit()
r_squared_statsmodels = model.rsquared
# 或者使用scikit-learn
clf = LinearRegression()
clf.fit(X, y)
r_squared_sklearn = clf.score(X, y)
```
`r_squared`的值越接近1,表示模型解释了因变量变化的更大比例;如果接近0,则说明模型预测能力较差。
线性回归方程判定系数代码python
以下是使用Python实现线性回归方程判定系数的示例代码:
```python
import numpy as np
from sklearn.linear_model import LinearRegression
# 输入数据
x = np.array([[1, 2, 3, 4, 5]]).T
y = np.array([2, 4, 5, 4, 5])
# 训练模型
model = LinearRegression()
model.fit(x, y)
# 计算判定系数
r_squared = model.score(x, y)
print("判定系数为:", r_squared)
```
在上面的代码中,我们使用numpy创建一个5行1列的矩阵x和一个包含5个元素的向量y作为输入数据。我们然后使用sklearn的LinearRegression模型拟合这些数据,并使用score方法来计算判定系数。
输出结果应该类似于:
```
判定系数为: 0.3076923076923078
```
其中,判定系数为0.3077,说明线性回归方程解释了数据的30.77%方差。
阅读全文
相关推荐
















