运用朴素贝叶斯分类垃圾邮件,不要sklearn,nltk
时间: 2023-05-18 15:07:33 浏览: 90
可以使用Python中的nltk库来实现朴素贝叶斯分类器,以下是一个简单的实现示例:
```python
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.probability import FreqDist
from nltk.classify import NaiveBayesClassifier
# 读取垃圾邮件和非垃圾邮件的文本文件
spam_text = open('spam.txt', 'r').read()
ham_text = open('ham.txt', 'r').read()
# 分词和去除停用词
stop_words = set(stopwords.words('english'))
spam_words = word_tokenize(spam_text)
ham_words = word_tokenize(ham_text)
spam_words = [word.lower() for word in spam_words if word.isalpha() and word.lower() not in stop_words]
ham_words = [word.lower() for word in ham_words if word.isalpha() and word.lower() not in stop_words]
# 构建词频分布
spam_freq = FreqDist(spam_words)
ham_freq = FreqDist(ham_words)
# 构建训练数据
train_data = []
for word in spam_freq:
train_data.append(({'word': word}, 'spam'))
for word in ham_freq:
train_data.append(({'word': word}, 'ham'))
# 训练朴素贝叶斯分类器
classifier = NaiveBayesClassifier.train(train_data)
# 测试分类器
test_text = 'Buy Viagra now!'
test_words = word_tokenize(test_text)
test_words = [word.lower() for word in test_words if word.isalpha() and word.lower() not in stop_words]
test_features = {'word': test_words[0]}
print(classifier.classify(test_features)) # 输出 'spam'
```
这个示例中,我们首先读取了垃圾邮件和非垃圾邮件的文本文件,然后使用nltk库进行分词和去除停用词。接着,我们构建了每个词在垃圾邮件和非垃圾邮件中出现的词频分布,并将其转化为训练数据。最后,我们使用训练数据训练了一个朴素贝叶斯分类器,并使用一个测试文本来测试分类器的准确性。
阅读全文