蚁群算法解决三维TSP问题代码
时间: 2023-09-06 09:09:18 浏览: 180
在 3D 空间中求解 TSP 的基于遗传 算法的启发式 算法的 实现_ C++_代码_下载
5星 · 资源好评率100%
以下是基于蚁群算法的三维TSP问题的代码实现:
```python
import numpy as np
class AntColonyTSP:
def __init__(self, num_ants, generations, alpha, beta, rho, Q, cities):
self.num_ants = num_ants # 蚂蚁数量
self.generations = generations # 迭代次数
self.alpha = alpha # 信息素重要程度因子
self.beta = beta # 启发函数重要程度因子
self.rho = rho # 信息素挥发因子
self.Q = Q # 常数因子
self.cities = cities # 城市坐标
self.num_cities = len(cities) # 城市数量
self.distances = self.calculate_distances() # 计算城市间距离矩阵
self.pheromone = np.ones((self.num_cities, self.num_cities)) / self.num_cities # 初始化信息素矩阵
self.best_path = None # 最优路径
self.best_distance = np.inf # 最优路径长度
def calculate_distances(self):
distances = np.zeros((self.num_cities, self.num_cities))
for i in range(self.num_cities):
for j in range(i+1, self.num_cities):
distances[i][j] = np.sqrt(sum((self.cities[i]-self.cities[j])**2))
distances[j][i] = distances[i][j]
return distances
def run(self):
for gen in range(self.generations):
all_paths = []
for ant in range(self.num_ants):
path = self.generate_path()
all_paths.append((path, self.calculate_distance(path)))
if all_paths[-1][1] < self.best_distance:
self.best_path = all_paths[-1][0]
self.best_distance = all_paths[-1][1]
self.update_pheromone(all_paths)
def generate_path(self):
path = []
visited = set()
current_city = np.random.randint(self.num_cities)
path.append(current_city)
visited.add(current_city)
while len(path) < self.num_cities:
next_city = self.select_next_city(current_city, visited)
path.append(next_city)
visited.add(next_city)
current_city = next_city
return path
def select_next_city(self, current_city, visited):
pheromone = np.copy(self.pheromone[current_city])
pheromone[list(visited)] = 0
probabilities = pheromone ** self.alpha * (1.0 / self.distances[current_city]) ** self.beta
probabilities = probabilities / np.sum(probabilities)
next_city = np.random.choice(range(self.num_cities), p=probabilities)
return next_city
def calculate_distance(self, path):
distance = 0
for i in range(self.num_cities-1):
distance += self.distances[path[i]][path[i+1]]
distance += self.distances[path[-1]][path[0]]
return distance
def update_pheromone(self, all_paths):
self.pheromone *= self.rho
for path, distance in all_paths:
for i in range(self.num_cities-1):
self.pheromone[path[i]][path[i+1]] += self.Q / distance
self.pheromone[path[-1]][path[0]] += self.Q / distance
```
其中,`num_ants`表示蚂蚁数量,`generations`表示迭代次数,`alpha`、`beta`、`rho`、`Q`分别为信息素重要程度因子、启发函数重要程度因子、信息素挥发因子和常数因子,`cities`是城市坐标列表。在`run`方法中,首先生成`num_ants`条路径,并计算它们的长度,然后更新信息素矩阵。在`generate_path`方法中,通过选择下一个未访问的城市来生成一条路径。在`select_next_city`方法中,计算出每个未访问的城市被选择的概率,并返回下一个城市。在`calculate_distance`方法中,计算一条路径的长度。在`update_pheromone`方法中,根据路径长度更新信息素矩阵。最后,运行`run`方法即可得到最优路径和最优路径长度。
阅读全文