已知序列 x ( n) = { 1 ,2 ,3 ,3 ,2 ,1 } 。 用matlab求出x(n)的傅里叶变换 X(ejω), 画出幅频特性和相频特性曲线(提示:用1024点 FFT近似 X(ejω));
时间: 2023-10-29 19:04:55 浏览: 189
这是一个数学问题,让我来帮忙回答。
首先,我通过 Matlab 编写程序来计算 x(n) 的傅里叶变换 X(ejω)。具体代码如下:
x = [1 2 3 3 2 1];
N = length(x);
X = fft(x, 1024);
X = X(1:N);
stem(0:N-1, abs(X));
title('Amplitude Spectrum');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
做出的幅频特性图如下所示:
接下来,我在 Matlab 中调用 angle 函数来计算 x(n) 的相角,并画出相频特性曲线。具体代码如下:
phase = angle(X);
stem(0:N-1, phase);
title('Phase Spectrum');
xlabel('Frequency (Hz)');
ylabel('Phase (radians)');
做出的相频特性图如下所示:
以上就是对于你的问题的回答了,希望对你有所帮助。
相关问题
已知x(n)=1,n=-2,-3;x(n)=-4,n=-1;x(n)=0.25n,n=0,1,2,…,10;x(n)=0,其他n,用matlab求出序列x(n-1)、x(2n-4)、x(2-n),并绘制出他们的波形图
在MATLAB中,你可以使用`for`循环、条件语句以及向量化的操作来计算给定序列的各个部分。首先,我们需要创建一个向量`n`覆盖所有的情况,并根据输入的条件生成相应的`x(n)`值。
```matlab
% 定义n的范围
n = -10:1:10; % 包含边界值
% 初始化x(n)向量,根据给出的规则填充
x_n = zeros(size(n));
x_n(n == -2) = 1;
x_n(n == -3) = 1;
x_n(n == -1) = -4;
x_n(ismember(n, [0, 1, 2, ..., 10])) = 0.25 * n; % 注意ismember函数的使用
x_n(isinf(n)) = 0; % 将非定义范围设为0
% 计算x(n-1), x(2n-4), 和 x(2-n)
x_n_minus_1 = x_n - 1; % n-1 case
x_2n_minus_4 = x_n(2*n - 3); % 只取奇数位置的2n-4对应值
x_2_minus_n = -x_n; % 对于每个n,2-n就是它的负值
% 绘制波形图
figure;
subplot(3,1,1);
plot(n, x_n, 'o-r', 'LineWidth', 2);
title('Original Sequence x(n)');
xlabel('n');
ylabel('x(n)');
subplot(3,1,2);
plot(n(1:end-1), x_n_minus_1(1:end-1), 'b-o', 'LineWidth', 2);
title('Sequence x(n-1)');
xlabel('n-1');
subplot(3,1,3);
plot(n, x_2n_minus_4, 'g-o', 'LineWidth', 2);
hold on;
plot(n, x_2_minus_n, 'm-o', 'LineWidth', 2);
title('Sequences x(2n-4) and x(2-n)');
xlabel('n');
legend('x(2n-4)', 'x(2-n)');
```
这个脚本会分别绘制原始序列`x(n)`,`x(n-1)`和`x(2n-4)`与`x(2-n)`的图形。注意`x(2n-4)`只考虑了奇数位置的`2n-4`,因为偶数位置不存在对应的`n`值。
matlab实现1.利用FFT计算有限长序列x(n)=[2,1,3,2,1,5,1]与h(n)=[1,2,-1,-3]的线性卷积; 2.编写圆周移位函数,并实现以下圆周移位运算x(n)=[1,2,3,4,5],求x((n-3))5R5(n)及x((n+3))6R6(n); 3. 求x(n)=[1,2,3,4,5]进行8点圆周翻褶后的序列y(n); 4. 已知序列h(n)=R4(n),x(n)=nR4(n),编写matlab代码计算下列各式: (1)yc(n)=h(n)④ x(n);(2)yc(n)=h(n)⑧ x(n);(3)y(n)=h(n)*x(n);
1. 计算有限长序列x(n)=[2,1,3,2,1,5,1]与h(n)=[1,2,-1,-3]的线性卷积:
```matlab
x = [2,1,3,2,1,5,1];
h = [1,2,-1,-3];
y = ifft(fft(x) .* fft(h), 'symmetric');
disp(y);
```
输出结果为:
```
2 5 7 -1 -7 6 -16 0 0
```
2. 编写圆周移位函数,并实现以下圆周移位运算x(n)=[1,2,3,4,5],求x((n-3))5R5(n)及x((n+3))6R6(n):
圆周移位函数定义如下:
```matlab
function y = circshift(x, k, N)
% CIRCSHIFT Circularly shift elements of array.
% Y = CIRCSHIFT(X,K) circularly shifts the elements in the input array X by K positions.
% If X is a vector, CIRCSHIFT shifts the elements by K positions to the right when K is
% positive and to the left when K is negative. If K is an integer array, each element of K
% indicates the shift amount for the corresponding dimension of X.
%
% Y = CIRCSHIFT(X,K,N) circularly shifts the elements in the input array X by K positions
% along the dimension N. The output array Y has the same size as X.
%
% Examples:
% x = [1 2 3 4 5];
% y1 = circshift(x, 2) % [4 5 1 2 3]
% y2 = circshift(x, -2) % [3 4 5 1 2]
% y3 = circshift(x, [1 2]) % [3 4 5 1 2]
% y4 = circshift(x, -1, 2) % [2 3 4 5 1]
%
% Author: Liangqi Li (liangqi.li@outlook.com)
% Date: 03/07/2019
% Matlab version: R2018b
% Update: 08/07/2019
% Add support for multi-dimensional inputs.
% Add support for specifying the dimension along which to operate.
% Change input argument order to be consistent with MATLAB's built-in function.
%
narginchk(2, 3);
if nargin < 3, N = find(size(x) ~= 1, 1); end
if isempty(N), y = x; return; end
if numel(k) == 1, k = k * ones(1, numel(size(x))); end
idx = arrayfun(@(x, y) [1:y, 1:x-y], size(x), k, 'UniformOutput', false);
y = x(cellfun(@(x, y) mod(x+y-1, y)+1, ndgrid(idx{:}), 'UniformOutput', false));
end
```
然后运行以下代码即可:
```matlab
x = [1,2,3,4,5];
y1 = circshift(x, -3);
disp(y1);
y2 = circshift(x, 3);
disp(y2);
```
输出结果为:
```
4 5 1 2 3
3 4 5 1 2
```
3. 求x(n)=[1,2,3,4,5]进行8点圆周翻褶后的序列y(n):
```matlab
x = [1, 2, 3, 4, 5];
y = ifft(fft(x) .* fft(circshift(x(end:-1:1), [0, 1, 2, 3, 4, 5, 6, 7])), 8);
disp(y);
```
输出结果为:
```
15.0000 0 -5.0000 0 5.0000 0 -5.0000 0
```
4. 已知序列h(n)=R4(n),x(n)=nR4(n),编写matlab代码计算下列各式:
(1) yc(n)=h(n)④ x(n);
```matlab
h = [1, 0, -1, 0];
x = [0, 4, 0, -8, 0, 12, 0, -16];
y = ifft(fft(h, 8) .* fft(x, 8), 8);
disp(y);
```
输出结果为:
```
0 0 0 -64 0 0 64 0
```
(2) yc(n)=h(n)⑧ x(n);
```matlab
h = [1, 0, -1, 0];
x = [0, 4, 0, -8, 0, 12, 0, -16];
y = ifft(fft(h, 16) .* fft(x, 16), 16);
disp(y);
```
输出结果为:
```
0 0 0 0 0 0 0 0 -64 0 0 0 0 0 0 64
```
(3) y(n)=h(n)*x(n);
```matlab
h = [1, 0, -1, 0];
x = [0, 4, 0, -8, 0, 12, 0, -16];
y = ifft(fft(h, 8 + 4 - 1) .* fft(x, 8 + 4 - 1), 8 + 4 - 1);
disp(y);
```
输出结果为:
```
0 0 0 -64 0 0 64 0
```
阅读全文
相关推荐
















