一共有12类不同的图像,分别被划分为训练集,验证集,分别在data文件夹下的train文件夹和val文件夹中。这12类图像中,其中有11类图像描述着各种各样的问题,分别在data文件夹下的train1文件夹和val1文件夹中。有1类图像是无缺陷的图像,分别在data文件夹下的train2文件夹和val2文件夹中。现在准备在一个分支上将11类有问题的图像用VGG16网络进行训练,再在另一个分支上将1类无问题的图像用VGG16网络进行训练,然后将这两个分支得到的结果进行相减,相减之后得到的结果,再次通过VGG16网络进行训练,对12类图像的数据集进行训练、验证。请给出相应代码。
时间: 2023-12-03 15:45:38 浏览: 104
划分数据集为测试集、验证集、训练集
首先,需要导入必要的库和模块:
```python
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator
```
接下来,定义VGG16网络模型:
```python
def create_vgg16():
input_layer = Input(shape=(224, 224, 3))
# Block 1
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(input_layer)
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# Block 2
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
# Block 3
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
# Block 4
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
# Block 5
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
# Flatten
x = Flatten(name='flatten')(x)
x = Dense(4096, activation='relu', name='fc1')(x)
x = Dense(4096, activation='relu', name='fc2')(x)
output_layer = Dense(12, activation='softmax', name='predictions')(x)
# Create model
model = Model(input_layer, output_layer)
return model
```
其中,输入图像的大小为224x224x3,输出层为12个类别,使用softmax激活。
接下来,定义训练、验证数据集的路径和参数:
```python
train_dir1 = 'data/train1'
val_dir1 = 'data/val1'
train_dir2 = 'data/train2'
val_dir2 = 'data/val2'
batch_size = 32
epochs = 50
train_datagen = ImageDataGenerator(rescale=1./255)
train_generator1 = train_datagen.flow_from_directory(
train_dir1,
target_size=(224, 224),
batch_size=batch_size,
class_mode='categorical')
train_generator2 = train_datagen.flow_from_directory(
train_dir2,
target_size=(224, 224),
batch_size=batch_size,
class_mode='categorical')
val_datagen = ImageDataGenerator(rescale=1./255)
validation_generator1 = val_datagen.flow_from_directory(
val_dir1,
target_size=(224, 224),
batch_size=batch_size,
class_mode='categorical')
validation_generator2 = val_datagen.flow_from_directory(
val_dir2,
target_size=(224, 224),
batch_size=batch_size,
class_mode='categorical')
```
其中,使用ImageDataGenerator进行数据增强和归一化,并生成训练、验证数据集的迭代器。
接下来,定义两个分支的VGG16网络模型:
```python
model1 = create_vgg16()
model2 = create_vgg16()
```
其中,model1用于训练11类有问题的图像,model2用于训练1类无问题的图像。
接下来,编译两个模型:
```python
model1.compile(loss='categorical_crossentropy',
optimizer=Adam(lr=1e-4),
metrics=['acc'])
model2.compile(loss='categorical_crossentropy',
optimizer=Adam(lr=1e-4),
metrics=['acc'])
```
其中,损失函数使用交叉熵,优化器使用Adam,学习率为1e-4。
接下来,分别训练两个模型:
```python
history1 = model1.fit(
train_generator1,
steps_per_epoch=train_generator1.samples // batch_size,
epochs=epochs,
validation_data=validation_generator1,
validation_steps=validation_generator1.samples // batch_size)
history2 = model2.fit(
train_generator2,
steps_per_epoch=train_generator2.samples // batch_size,
epochs=epochs,
validation_data=validation_generator2,
validation_steps=validation_generator2.samples // batch_size)
```
其中,每个模型的训练步数为训练集的样本数除以batch_size。
接下来,将两个模型的输出层相减,得到新的模型:
```python
output_layer1 = model1.get_layer('fc2').output
output_layer2 = model2.get_layer('fc2').output
merged_layer = Dense(4096, activation='relu', name='merged_fc1')(output_layer1-output_layer2)
merged_layer = Dense(4096, activation='relu', name='merged_fc2')(merged_layer)
merged_output_layer = Dense(12, activation='softmax', name='merged_predictions')(merged_layer)
merged_model = Model(inputs=[model1.input, model2.input], outputs=merged_output_layer)
```
其中,使用model1和model2的前两个输出层作为输入层,将它们相减,并通过两个全连接层后,再接softmax输出层。
接下来,编译新的模型:
```python
merged_model.compile(loss='categorical_crossentropy',
optimizer=Adam(lr=1e-4),
metrics=['acc'])
```
接下来,定义新的训练、验证数据集的迭代器:
```python
train_datagen_merged = ImageDataGenerator(rescale=1./255)
train_generator_merged = train_datagen_merged.flow_from_directory(
'data/train',
target_size=(224, 224),
batch_size=batch_size,
class_mode='categorical')
val_datagen_merged = ImageDataGenerator(rescale=1./255)
validation_generator_merged = val_datagen_merged.flow_from_directory(
'data/val',
target_size=(224, 224),
batch_size=batch_size,
class_mode='categorical')
```
其中,训练、验证数据集的路径为'data/train'和'data/val',包含有问题的图像和无问题的图像,共12类。
接下来,训练新的模型:
```python
history_merged = merged_model.fit(
[train_generator1, train_generator2],
steps_per_epoch=train_generator_merged.samples // batch_size,
epochs=epochs,
validation_data=validation_generator_merged,
validation_steps=validation_generator_merged.samples // batch_size)
```
其中,使用两个训练、验证数据集的迭代器作为输入,每个训练步数为训练集的样本数除以batch_size。
最后,可以对新模型进行测试:
```python
test_datagen = ImageDataGenerator(rescale=1./255)
test_generator = test_datagen.flow_from_directory(
'data/test',
target_size=(224, 224),
batch_size=batch_size,
class_mode='categorical')
score = merged_model.evaluate_generator(test_generator, steps=test_generator.samples // batch_size)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
其中,测试集的路径为'data/test',包含有问题的图像和无问题的图像,共12类。
阅读全文