layers = [ imageInputLayer([128 128 1]) convolution2dLayer(3, 64, 'Padding', 'same') reluLayer convolution2dLayer(3, 64, 'Padding', 'same') reluLayer convolution2dLayer(3, 64, 'Padding', 'same') reluLayer convolution2dLayer(3, 1, 'Padding', 'same') regressionLayer];解释这段代码
时间: 2024-01-03 11:02:59 浏览: 83
基于卷积神经网络手写数字识别,MATLAB代码,带有gui界面
这段代码定义了一个卷积神经网络的层次结构,用于去除图像中的噪声。具体来说,该神经网络包括以下层:
- `imageInputLayer([128 128 1])`:输入图像层,指定输入图像的大小为[128,128,1],其中1表示输入图像是灰度图像。
- `convolution2dLayer(3, 64, 'Padding', 'same')`:卷积层,使用3x3大小的卷积核对输入图像进行卷积操作,生成64个卷积特征图。'Padding', 'same'指定在卷积操作之前使用零填充对输入图像进行填充,以保持输出特征图与输入图像的大小相同。
- `reluLayer`:整流线性单元层,对卷积层的输出特征图进行非线性变换,增强其非线性表示能力。
- `convolution2dLayer(3, 64, 'Padding', 'same')`:再次使用卷积层,生成64个卷积特征图。
- `reluLayer`:再次使用整流线性单元层,对卷积层的输出特征图进行非线性变换。
- `convolution2dLayer(3, 64, 'Padding', 'same')`:再次使用卷积层,生成64个卷积特征图。
- `reluLayer`:再次使用整流线性单元层,对卷积层的输出特征图进行非线性变换。
- `convolution2dLayer(3, 1, 'Padding', 'same')`:最后一个卷积层,使用3x3大小的卷积核对输入图像进行卷积操作,生成1个卷积特征图。这一层的输出表示预测的图像结果。
- `regressionLayer`:回归层,该层将神经网络的输出映射到标签数据并计算损失函数,以进行训练。
这个神经网络结构可以用于去除图像中的噪声,其中包含了多个卷积层和整流线性单元层,可以有效地提取图像中的特征信息,并将其映射到目标图像中。
阅读全文