layers = [ imageInputLayer([128 128 1]) convolution2dLayer(3, 64, 'Padding', 'same') reluLayer convolution2dLayer(3, 64, 'Padding', 'same') reluLayer convolution2dLayer(3, 64, 'Padding', 'same') reluLayer convolution2dLayer(3, 1, 'Padding', 'same') regressionLayer];解释这段代码

时间: 2024-01-03 09:02:59 浏览: 67
这段代码定义了一个卷积神经网络的层次结构,用于去除图像中的噪声。具体来说,该神经网络包括以下层: - `imageInputLayer([128 128 1])`:输入图像层,指定输入图像的大小为[128,128,1],其中1表示输入图像是灰度图像。 - `convolution2dLayer(3, 64, 'Padding', 'same')`:卷积层,使用3x3大小的卷积核对输入图像进行卷积操作,生成64个卷积特征图。'Padding', 'same'指定在卷积操作之前使用零填充对输入图像进行填充,以保持输出特征图与输入图像的大小相同。 - `reluLayer`:整流线性单元层,对卷积层的输出特征图进行非线性变换,增强其非线性表示能力。 - `convolution2dLayer(3, 64, 'Padding', 'same')`:再次使用卷积层,生成64个卷积特征图。 - `reluLayer`:再次使用整流线性单元层,对卷积层的输出特征图进行非线性变换。 - `convolution2dLayer(3, 64, 'Padding', 'same')`:再次使用卷积层,生成64个卷积特征图。 - `reluLayer`:再次使用整流线性单元层,对卷积层的输出特征图进行非线性变换。 - `convolution2dLayer(3, 1, 'Padding', 'same')`:最后一个卷积层,使用3x3大小的卷积核对输入图像进行卷积操作,生成1个卷积特征图。这一层的输出表示预测的图像结果。 - `regressionLayer`:回归层,该层将神经网络的输出映射到标签数据并计算损失函数,以进行训练。 这个神经网络结构可以用于去除图像中的噪声,其中包含了多个卷积层和整流线性单元层,可以有效地提取图像中的特征信息,并将其映射到目标图像中。

相关推荐

%差异性分析 % 分割数据集为训练集和测试集 cv = cvpartition(size(features, 1),'Holdout',0.2); Xtrain = features(training(cv),:); Ytrain = categorical(label(training(cv))); Xtest = features(test(cv),:); Ytest = categorical(label(test(cv))); % 定义 CNN 架构 layers = [ imageInputLayer([1 3 1],'Name','input') convolution2dLayer([1 3],32,'Padding','same','Name','conv1') batchNormalizationLayer('Name','BN1') reluLayer('Name','relu1') maxPooling2dLayer([1 2],'Stride',[1 2],'Name','pool1') convolution2dLayer([1 3],64,'Padding','same','Name','conv2') batchNormalizationLayer('Name','BN2') reluLayer('Name','relu2') maxPooling2dLayer([1 2],'Stride',[1 2],'Name','pool2','Padding','same') % 添加 padding fullyConnectedLayer(128,'Name','fc') batchNormalizationLayer('Name','BN3') reluLayer('Name','relu3') fullyConnectedLayer(4,'Name','fc2') softmaxLayer('Name','softmax') classificationLayer('Name','classoutput')]; % 定义训练选项 options = trainingOptions('sgdm', ... 'MaxEpochs',20, ... 'ValidationData',{Xtest,Ytest}, ... 'ValidationFrequency',30, ... 'Verbose',false, ... 'Plots','training-progress'); % 训练 CNN net = trainNetwork(Xtrain,Ytrain,layers,options); % 对测试集进行预测 YPred = classify(net,Xtest); % 计算分类准确率 accuracy = sum(YPred == Ytest)/numel(Ytest); disp(['Classification accuracy: ' num2str(accuracy)]);错误使用 trainNetwork (第 184 行) 输入参数太多。 出错 CNN (第 32 行) net = trainNetwork(Xtrain,Ytrain,layers,options);要怎么解决?给代码

% 分割数据集为训练集和测试集 cv = cvpartition(size(features, 1),'Holdout',0.2); Xtrain = features(training(cv),:); Ytrain = categorical(labels(training(cv))); Xtest = features(test(cv),:); Ytest = categorical(labels(test(cv))); % 定义 CNN 架构 layers = [ imageInputLayer([1 3 1],'Name','input') convolution2dLayer([1 3],32,'Padding','same','Name','conv1') batchNormalizationLayer('Name','BN1') reluLayer('Name','relu1') maxPooling2dLayer([1 2],'Stride',[1 2],'Name','pool1') convolution2dLayer([1 3],64,'Padding','same','Name','conv2') batchNormalizationLayer('Name','BN2') reluLayer('Name','relu2') maxPooling2dLayer([1 2],'Stride',[1 2],'Name','pool2') fullyConnectedLayer(128,'Name','fc') batchNormalizationLayer('Name','BN3') reluLayer('Name','relu3') fullyConnectedLayer(4,'Name','fc2') softmaxLayer('Name','softmax') classificationLayer('Name','classoutput')]; % 定义训练选项 options = trainingOptions('sgdm', ... 'MaxEpochs',20, ... 'ValidationData',{Xtest,Ytest}, ... 'ValidationFrequency',30, ... 'Verbose',false, ... 'Plots','training-progress'); % 训练 CNN net = trainNetwork(Xtrain,Ytrain,layers,options); % 对测试集进行预测 YPred = classify(net,Xtest); % 计算分类准确率 accuracy = sum(YPred == Ytest)/numel(Ytest); disp(['Classification accuracy: ' num2str(accuracy)]);代码中出现 层 'pool2': 输入大小不匹配。此层的输入大小与预期的输入大小不同。 此层的输入: 来自 层 'relu2' (大小 1(S) × 1(S) × 64(C) × 1(B))错误要怎么用padding来解决?给代码

这段代码有错误,我应该更改成什么样子%% I. 清空环境变量 clear all clc %% II. 训练集/测试集产生 %% % 1. 导入数据 data = csvread("results.csv"); train_ratio = 0.8; [m,n] = size(data); %% % 2. 产生训练集和测试集 temp = randperm(size(data,1));%size(a,1)行数,size(aa,2)列数产生随机数列 % 训练集 P_train = data(temp(1:train_ratio*m),1:58)';%单引号矩阵转置 % T_train = zeros(58,train_ratio*m); T_train = data(temp(1:train_ratio*m),59:62)'; %T_train(1:4,:) = data(temp(1:train_ratio*m),59:62)'; % 测试集 P_test = data(temp(train_ratio*m+1:end),1:58)'; T_test = data(temp(train_ratio*m+1:end),59:62)'; N = size(P_test,2); %% III. 数据归一化 [p_train, ps_input] = mapminmax(P_train,0,1);%归一化训练数据,线性? p_test = mapminmax('apply',P_test,ps_input);%测试数据同样规则归一化 [t_train, ps_output] = mapminmax(T_train,0,1); %%CNN架构 layers = [ imageInputLayer([58 1]) %输入层参数设置 %第一层卷积层和池化层 convolution2dLayer(4,16,'Padding','same') %[64,1]是卷积核大小,128是个数 %对于一维数据,卷积核第二个参数为1就行了,这样就是一维卷积 reluLayer %relu激活函数 maxPooling2dLayer(2,'Stride',2) %第二层卷积层和池化层 convolution2dLayer(4,16,'Padding','same') reluLayer %relu激活函数 maxPooling2dLayer(2,'Stride',2) %两层全连接层 fullyConnectedLayer(20) % 20个全连接层神经元 reluLayer %relu激活函数 fullyConnectedLayer(4) % 输出层神经元个数 softmaxLayer regressionLayer%添加回归层,用于计算损失值 ]; % 定义训练选项 options = trainingOptions('adam', ...%优化方法:sgdm、adam等 'MaxEpochs',100, ... 'MiniBatchSize',20, ... 'InitialLearnRate',0.001, ... 'GradientThreshold',1, ... 'Verbose',true,... 'ExecutionEnvironment','multi-gpu',...% GPU训练 'Plots','training-progress',...%'none'代表不显示训练过程 'ValidationData',{p_test, T_test});%验证集 %训练模型 net = trainNetwork(p_train',t_train',layers,options);

1、读取数据 digitDatasetPath=fullfile(matlabroot,'toolbox','nnet','nndemos','nndatasets','DigitDataset'); imds=imageDatastore(digitDatasetPath,'IncludeSubfolders',true,'LabelSource','foldernames'); numTrainingFiles=0.75; [imdsTrain,imdsTest]=splitEachLabel(imds,numTrainingFiles,'randomized'); 2、神经网络架构 layers=[... imageInputLayer([28 28 1]); convolution2dLayer(5,6,'Stride',1,'Padding','same'); reluLayer maxPooling2dLayer(2,'Stride',2,'Padding','same') convolution2dLayer(5,16,'Stride',1,'Padding','same'); reluLayer maxPooling2dLayer(2,'Stride',2,'Padding','same') fullyConnectedLayer(120) reluLayer fullyConnectedLayer(84) reluLayer fullyConnectedLayer(10) softmaxLayer classificationLayer ]; 3、超参数设置 options=trainingOptions('adam',... 'ExecutionEnvironment','auto','MaxEpochs',30,... 'InitialLearnRate',1e-3,'Verbose',false,'Plots','training-progress'); 4、神经网络训练 net=trainNetwork(imdsTrain,layers,options); 5、预测和输出 Ypred=classify(net, imdsTest); YTest=imdsTest.Labels; accuracy=sum(Ypred==YTest)/numel(YTest) fprintf('精确值为:%5.2f%%\n',accuracy*100); clear I=imread('风扇.png'); net = squeezenet; %net = resnet50('Weights','none') inputSize=net.Layers(1).InputSize; I_resize=imresize(I,inputSize(1:2)); label=classify(net,I_resize,'ExecutionEnvironment','cpu'); 6、输出图片 figure subplot(1,4,1),plot(layerGraph(net.Layers)); subplot(1,4,2),imshow(I); subplot(1,4,3),imshow(I_resize); subplot(1,4,4),imshow(I_resize);title(string(label))

% 构建cnn网络进行训练 trainingSetup = load("C:\Users\Administrator\Desktop\MATLAB基于卷积神经网络的手势识别\代码\cnn.mat"); imdsTrain = trainingSetup.imdsTrain; [imdsTrain, imdsValidation] = splitEachLabel(imdsTrain,0.7);% 70%用于训练 % 调整图像大小以匹配网络输入层。 augimdsTrain = augmentedImageDatastore([28 28 1],imdsTrain); augimdsValidation = augmentedImageDatastore([28 28 1],imdsValidation); layers = [ imageInputLayer([28 28 1],"Name","imageinput") convolution2dLayer([3 3],32,"Name","conv_1","Padding","same") batchNormalizationLayer("Name","batchnorm_1") reluLayer("Name","relu_1") maxPooling2dLayer([3 3],"Name","maxpool_1","Padding","same") convolution2dLayer([3 3],32,"Name","conv_2","Padding","same") batchNormalizationLayer("Name","batchnorm_2") reluLayer("Name","relu_2") maxPooling2dLayer([3 3],"Name","maxpool_2","Padding","same") fullyConnectedLayer(10,"Name","fc") softmaxLayer("Name","softmax") classificationLayer("Name","classoutput")]; figure('Visible','on'); plot(layerGraph(layers)) % 显示网络结构图 opts = trainingOptions("sgdm",... "ExecutionEnvironment","auto",... "InitialLearnRate",0.01,... "Shuffle","every-epoch",... "MaxEpochs",15, ... % 最大学习整个数据集的次数,训练15轮 "MiniBatchSize",130, ... % 一个batch有130个样本 "Plots","training-progress",... % 画出整个训练过程 "ValidationData",augimdsValidation); % MaxEpochsy:训练轮数;MiniBatchSize:每轮迭代次数 = 训练样本数 / MiniBatchSize [net, traininfo] = trainNetwork(augimdsTrain,layers,opts); % 保存当前网络 save('cnn.mat','net')

最新推荐

recommend-type

基于opencv实现象棋识别及棋谱定位python源码+数据集-人工智能课程设计

基于opencv实现象棋识别及棋谱定位python源码+数据集-人工智能课程设计,含有代码注释,满分课程设计资源,新手也可看懂,期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。该项目可以作为课程设计期末大作业使用,该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 基于opencv实现象棋识别及棋谱定位python源码+数据集-人工智能课程设计,含有代码注释,满分课程设计资源,新手也可看懂,期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。该项目可以作为课程设计期末大作业使用,该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 基于opencv实现象棋识别及棋谱定位python源码+数据集-人工智能课程设计,含有代码注释,满分课程设计资源,新手也可看懂,期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。该项目可以作为课程设计期末大作业使用,该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。基于opencv实现象棋识别及棋谱定位python源码+数据集
recommend-type

基于Python实现的Cowrie蜜罐设计源码

该项目为基于Python实现的Cowrie蜜罐设计源码,共计380个文件,涵盖166个Python源代码文件,以及包括RST、SQL、YAML、Markdown等多种类型的配置和文档文件。Cowrie蜜罐是一款用于记录暴力攻击和攻击者执行的SSH及Telnet交互的中等交互式蜜罐。
recommend-type

QT 摄像头获取每一帧图像数据以及opencv获取清晰度

QT 摄像头获取每一帧图像数据以及opencv获取清晰度
recommend-type

IPQ4019 QSDK开源代码资源包发布

资源摘要信息:"IPQ4019是高通公司针对网络设备推出的一款高性能处理器,它是为需要处理大量网络流量的网络设备设计的,例如无线路由器和网络存储设备。IPQ4019搭载了强大的四核ARM架构处理器,并且集成了一系列网络加速器和硬件加密引擎,确保网络通信的速度和安全性。由于其高性能的硬件配置,IPQ4019经常用于制造高性能的无线路由器和企业级网络设备。 QSDK(Qualcomm Software Development Kit)是高通公司为了支持其IPQ系列芯片(包括IPQ4019)而提供的软件开发套件。QSDK为开发者提供了丰富的软件资源和开发文档,这使得开发者可以更容易地开发出性能优化、功能丰富的网络设备固件和应用软件。QSDK中包含了内核、驱动、协议栈以及用户空间的库文件和示例程序等,开发者可以基于这些资源进行二次开发,以满足不同客户的需求。 开源代码(Open Source Code)是指源代码可以被任何人查看、修改和分发的软件。开源代码通常发布在公共的代码托管平台,如GitHub、GitLab或SourceForge上,它们鼓励社区协作和知识共享。开源软件能够通过集体智慧的力量持续改进,并且为开发者提供了一个测试、验证和改进软件的机会。开源项目也有助于降低成本,因为企业或个人可以直接使用社区中的资源,而不必从头开始构建软件。 U-Boot是一种流行的开源启动加载程序,广泛用于嵌入式设备的引导过程。它支持多种处理器架构,包括ARM、MIPS、x86等,能够初始化硬件设备,建立内存空间的映射,从而加载操作系统。U-Boot通常作为设备启动的第一段代码运行,它为系统提供了灵活的接口以加载操作系统内核和文件系统。 标题中提到的"uci-2015-08-27.1.tar.gz"是一个开源项目的压缩包文件,其中"uci"很可能是指一个具体项目的名称,比如U-Boot的某个版本或者是与U-Boot配置相关的某个工具(U-Boot Config Interface)。日期"2015-08-27.1"表明这是该项目的2015年8月27日的第一次更新版本。".tar.gz"是Linux系统中常用的归档文件格式,用于将多个文件打包并进行压缩,方便下载和分发。" 描述中复述了标题的内容,强调了文件是关于IPQ4019处理器的QSDK资源,且这是一个开源代码包。此处未提供额外信息。 标签"软件/插件"指出了这个资源的性质,即它是一个软件资源,可能包含程序代码、库文件或者其他可以作为软件一部分的插件。 在文件名称列表中,"uci-2015-08-27.1"与标题保持一致,表明这是一个特定版本的软件或代码包。由于实际的文件列表中只提供了这一项,我们无法得知更多的文件信息,但可以推测这是一个单一文件的压缩包。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【PDF表格创建与编辑】:使用Apache PDFBox和iText库制作表格,表格处理不求人

![java 各种pdf处理常用库介绍与使用](https://img-blog.csdnimg.cn/img_convert/6ae15afdef45b1d8fe6d289f0065d18c.png) # 1. PDF表格创建与编辑概述 在当今数字化时代,PDF格式因其可移植性和可维护性成为了电子文档的首选。在诸多应用场景中,表格作为一种重要的信息传递工具,其创建与编辑的需求日益增长。本章节将为读者提供一个关于PDF表格创建与编辑的概述,为后续章节中使用Apache PDFBox和iText库进行深入探讨奠定基础。 ## 1.1 PDF表格的作用与重要性 PDF表格在商务沟通、数据分析
recommend-type

python输出txt文件

在Python中,你可以使用内置的`open()`函数来创建和写入TXT文件。下面是一个简单的例子: ```python # 打开文件(如果不存在则创建) with open('example.txt', 'w') as file: # 写入文本内容 file.write('这是你要写入的内容') # 如果你想追加内容而不是覆盖原有文件 # 使用 'a' 模式(append) # with open('example.txt', 'a') as file: # file.write('\n这是追加的内容') # 关闭文件时会自动调用 `close()` 方法,但使
recommend-type

高频组电赛必备:掌握数字频率合成模块要点

资源摘要信息:"2022年电赛 高频组必备模块 数字频率合成模块" 数字频率合成(DDS,Direct Digital Synthesis)技术是现代电子工程中的一种关键技术,它允许通过数字方式直接生成频率可调的模拟信号。本模块是高频组电赛参赛者必备的组件之一,对于参赛者而言,理解并掌握其工作原理及应用是至关重要的。 本数字频率合成模块具有以下几个关键性能参数: 1. 供电电压:模块支持±5V和±12V两种供电模式,这为用户提供了灵活的供电选择。 2. 外部晶振:模块自带两路输出频率为125MHz的外部晶振,为频率合成提供了高稳定性的基准时钟。 3. 输出信号:模块能够输出两路频率可调的正弦波信号。其中,至少有一路信号的幅度可以编程控制,这为信号的调整和应用提供了更大的灵活性。 4. 频率分辨率:模块提供的频率分辨率为0.0291Hz,这样的精度意味着可以实现非常精细的频率调节,以满足高频应用中的严格要求。 5. 频率计算公式:模块输出的正弦波信号频率表达式为 fout=(K/2^32)×CLKIN,其中K为设置的频率控制字,CLKIN是外部晶振的频率。这一计算方式表明了频率输出是通过编程控制的频率控制字来设定,从而实现高精度的频率合成。 在高频组电赛中,参赛者不仅需要了解数字频率合成模块的基本特性,还应该能够将这一模块与其他模块如移相网络模块、调幅调频模块、AD9854模块和宽带放大器模块等结合,以构建出性能更优的高频信号处理系统。 例如,移相网络模块可以实现对信号相位的精确控制,调幅调频模块则能够对信号的幅度和频率进行调整。AD9854模块是一种高性能的DDS芯片,可以用于生成复杂的波形。而宽带放大器模块则能够提供足够的增益和带宽,以保证信号在高频传输中的稳定性和强度。 在实际应用中,电赛参赛者需要根据项目的具体要求来选择合适的模块组合,并进行硬件的搭建与软件的编程。对于数字频率合成模块而言,还需要编写相应的控制代码以实现对K值的设定,进而调节输出信号的频率。 交流与讨论在电赛准备过程中是非常重要的。与队友、指导老师以及来自同一领域的其他参赛者进行交流,不仅可以帮助解决技术难题,还可以相互启发,激发出更多创新的想法和解决方案。 总而言之,对于高频组的电赛参赛者来说,数字频率合成模块是核心组件之一。通过深入了解和应用该模块的特性,结合其他模块的协同工作,参赛者将能够构建出性能卓越的高频信号处理设备,从而在比赛中取得优异成绩。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【PDF元数据管理】:如何使用Java库管理和编辑PDF元数据,元数据管理的秘密

![【PDF元数据管理】:如何使用Java库管理和编辑PDF元数据,元数据管理的秘密](https://www.iptc.org/std/photometadata/documentation/userguide/images/PhotoMetadata_UnderTheHood.jpg) # 1. PDF元数据管理概述 在当今数字化工作流程中,PDF文件以其平台独立性和格式固定性成为了文档交换的标准格式。元数据——关于数据的数据——在PDF中扮演了至关重要的角色,它们提供了文档的内容摘要和结构信息,使得文件管理更加高效。在本章中,我们将探讨PDF元数据的基础知识,它们如何增强文档的可用性,