jetson nano上读取基于CSI摄像头的模型推理 python语言
时间: 2023-09-02 08:05:48 浏览: 180
jetson nano csi摄像头 tensorrt 运行yolov8检测 项目代码
5星 · 资源好评率100%
要在Jetson Nano上读取基于CSI摄像头的模型推理,您需要使用NVIDIA Jetson Nano Developer Kit的JetPack软件包中提供的Deep Learning SDK和相关工具。
以下是一些步骤,可以帮助您开始:
1. 安装JetPack软件包,包括TensorRT和CUDA等必要的组件。
2. 连接CSI摄像头并确保其可用。
3. 使用Python和TensorRT API编写您的推理代码。
以下是一个简单的Python代码示例,可以用于从CSI摄像头读取图像并进行推理:
```python
import argparse
import numpy as np
import cv2
import pycuda.autoinit
import pycuda.driver as cuda
import tensorrt as trt
# Define the input shape of the model
INPUT_SHAPE = (3, 224, 224)
# Load the TensorRT engine
def load_engine(engine_path):
with open(engine_path, 'rb') as f, trt.Runtime(trt.Logger(trt.Logger.WARNING)) as runtime:
return runtime.deserialize_cuda_engine(f.read())
# Allocate device memory for inputs and outputs
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
bindings.append(int(device_mem))
if engine.binding_is_input(binding):
inputs.append({'host': host_mem, 'device': device_mem})
else:
outputs.append({'host': host_mem, 'device': device_mem})
return inputs, outputs, bindings
# Preprocess the input image
def preprocess_image(image):
image = cv2.resize(image, (INPUT_SHAPE[1], INPUT_SHAPE[2]))
image = image.transpose((2, 0, 1)).astype(np.float32) / 255.0
return image
# Run inference on the input image
def run_inference(engine, inputs, outputs, bindings, image):
# Preprocess the input image
image = preprocess_image(image)
# Copy the input image to device memory
cuda.memcpy_htod_async(inputs[0]['device'], image, cuda.Stream())
# Run inference
context = engine.create_execution_context()
context.execute_async_v2(bindings=bindings, stream_handle=cuda.Stream().handle)
# Copy the output tensor back to host memory
cuda.memcpy_dtoh_async(outputs[0]['host'], outputs[0]['device'], cuda.Stream())
cuda.Stream().synchronize()
# Return the output tensor
return outputs[0]['host']
# Main function
def main():
# Parse command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--engine', type=str, required=True)
args = parser.parse_args()
# Load the TensorRT engine
engine = load_engine(args.engine)
# Allocate device memory for inputs and outputs
inputs, outputs, bindings = allocate_buffers(engine)
# Open the CSI camera
cap = cv2.VideoCapture("nvarguscamerasrc ! video/x-raw(memory:NVMM), width=1920, height=1080, format=NV12, framerate=30/1 ! nvvidconv ! video/x-raw, format=BGRx ! videoconvert ! video/x-raw, format=BGR ! appsink")
while True:
# Capture a frame from the camera
ret, frame = cap.read()
# Run inference on the frame
output = run_inference(engine, inputs, outputs, bindings, frame)
# Display the output
cv2.imshow("Output", output)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the camera and destroy the windows
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()
```
在这个示例中,我们首先加载了预先训练好的模型的TensorRT引擎。然后,我们为模型的输入和输出分配了设备内存。接下来,我们使用CSI摄像头捕获帧,并将其用于推理。最后,我们显示了推理输出,并在用户按下“q”键时退出了程序。
请注意,这只是一个简单的示例代码,您可能需要根据您的实际情况进行更改。
阅读全文