import numpy as np import matplotlib.pyplot as plt data = np.loadtxt(open("C:\Users\DELL\Desktop\data1_20x20.csv","rb"),delimiter=",",skiprows=1,usecols=[0,1,2,3]).astype(int) img=np.zeros((20,20,4)).astype(int) for i in range(3): k=0 for j in range(20): for l in range(20): img[j][l][i] = int(data[k][i]) k=k+1 plt.imshow(img[:, :, 0:3]) plt.show 为啥输出不了图像

时间: 2023-11-27 08:53:10 浏览: 38
你的代码似乎有些问题。试着按照以下方式修改它: ```python import numpy as np import matplotlib.pyplot as plt data = np.loadtxt(open("C:\Users\DELL\Desktop\data1_20x20.csv","rb"), delimiter=",", skiprows=1, usecols=[0,1,2,3]).astype(int) img = np.zeros((20,20,4)).astype(int) for i in range(3): k = 0 for j in range(20): for l in range(20): img[j][l][i] = int(data[k][i]) k = k + 1 plt.imshow(img[:, :, 0:3]) plt.show() ``` 这个代码应该可以正确地读取数据、生成图像并显示出来。如果你仍然无法看到图像,请检查以下几点: 1. 确保你已经安装了 matplotlib 库。你可以在终端中输入 `pip install matplotlib` 来安装它。 2. 检查图片路径是否正确,如果不正确,请修改路径。 3. 如果你使用的是 Jupyter Notebook,注意在 plt.show() 前加入 `%matplotlib inline`。
相关问题

import numpy as np import matplotlib.pyplot as plt %读取文件 data = np.loadtxt('D:\output_file.txt'); %对数据进行频谱分析 fft_data = np.fft.fft(data); freq = np.fft.fftfreq(len(data)); %可视化频谱分析结果 plt.figure(); plt.plot(freq, np.abs(fft_data)); plt.xlabel('Frequency (Hz)'); plt.ylabel('Magnitude'); plt.show(); 错误: 无法找到或导入 'numpy'。导入的名称必须以 '.*' 结尾或是完全限定的名称。

抱歉,我在之前的回答中没有考虑到在Jupyter Notebook或者MATLAB等软件中使用代码的情况。在这些软件中,需要在代码开头加上`%matplotlib inline`命令来指定Matplotlib库的绘图方式。同时,也需要在代码中导入Numpy和Matplotlib库。以下是修改后的示例代码: ```python %matplotlib inline import numpy as np import matplotlib.pyplot as plt # 读取文件 data = np.loadtxt('D:\output_file.txt') # 对数据进行频谱分析 fft_data = np.fft.fft(data) freq = np.fft.fftfreq(len(data)) # 可视化频谱分析结果 plt.figure() plt.plot(freq, np.abs(fft_data)) plt.xlabel('Frequency (Hz)') plt.ylabel('Magnitude') plt.show() ``` 注意,这段代码需要在Jupyter Notebook或者MATLAB等软件中运行,而不能在Python解释器中运行。

from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score import numpy as np import seaborn as sns import matplotlib.pyplot as plt # 读取数据 data = np.loadtxt(r"D:\数学建模\重航数学建模校赛\附件1(前50行).csv", encoding='gbk') # 定义肘部法函数 def find_best_k(data): SSE = [] for k in range(1, 11): estimator = KMeans(n_clusters=k) estimator.fit(data) SSE.append(estimator.inertia_) X = range(1, 11) plt.xlabel('k') plt.ylabel('SSE') plt.plot(X, SSE, 'o-') plt.show() # 计算轮廓系数 def calculate_silhouette_score(data, k): estimator = KMeans(n_clusters=k) estimator.fit(data) score = silhouette_score(data, estimator.labels_) return score # 调用函数 find_best_k(data) score = calculate_silhouette_score(data, 3) print(score)代码改进

以下是对代码的一些改进建议: 1. 在函数 `find_best_k` 中,绘制图表的代码应该放在 for 循环外面,否则每次循环都会绘制一次图表,影响代码效率。同时,应该添加一个变量记录最佳的 k 值,以便后续计算轮廓系数时使用。 2. 在计算轮廓系数时,不应该固定 k 值为 3,而应该使用最佳的 k 值。 3. 在绘制图表时,应该添加标题和图例,方便阅读。 综上所述,改进后的代码如下所示: ```python from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score import numpy as np import seaborn as sns import matplotlib.pyplot as plt # 读取数据 data = np.loadtxt(r"D:\数学建模\重航数学建模校赛\附件1(前50行).csv", encoding='gbk') # 定义肘部法函数 def find_best_k(data): SSE = [] for k in range(1, 11): estimator = KMeans(n_clusters=k) estimator.fit(data) SSE.append(estimator.inertia_) # 绘制肘部法图表 plt.plot(range(1, 11), SSE, 'o-') plt.xlabel('k') plt.ylabel('SSE') plt.title('Elbow method') plt.legend(['SSE']) plt.show() # 计算最佳 k 值 best_k = np.argmin(np.diff(SSE)) + 2 return best_k # 计算轮廓系数 def calculate_silhouette_score(data, k): estimator = KMeans(n_clusters=k) estimator.fit(data) score = silhouette_score(data, estimator.labels_) return score # 调用函数 best_k = find_best_k(data) score = calculate_silhouette_score(data, best_k) print("Best k value:", best_k) print("Silhouette score:", score) ``` 改进后的代码中,肘部法图表只绘制了一次,最佳 k 值也只计算了一次,同时添加了标题和图例,方便阅读。轮廓系数计算时使用了最佳的 k 值,保证了计算结果的准确性。

相关推荐

from keras.models import Sequential from keras.layers import Dense from sklearn.preprocessing import MinMaxScaler import numpy as np from sklearn.model_selection import train_test_split # 加载数据集,18列数据 dataset = np.loadtxt(r'D:\python-learn\asd.csv', delimiter=",",skiprows=1) # 划分数据, 使用17列数据来预测最后一列 X = dataset[:,0:17] y = dataset[:,17] # 归一化 scaler = MinMaxScaler(feature_range=(0, 1)) X = scaler.fit_transform(X) y = scaler.fit_transform(y.reshape(-1, 1)) # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 创建模型 model = Sequential() model.add(Dense(64, input_dim=17, activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(16, activation='relu')) model.add(Dense(8, activation='relu')) model.add(Dense(1, activation='linear')) # 编译模型, 选择MSE作为损失函数 model.compile(loss='mse', optimizer='adam') # 训练模型, 迭代1000次 model.fit(X_train, y_train, epochs=300, batch_size=32) score= model.evaluate(X_train, y_train) print('Test loss:', score) # 评估神经网络模型 score= model.evaluate(X_test,y_test) print('Test loss:', score) # 预测结果 dataset = np.loadtxt(r'D:\python-learn\testdata.csv', delimiter=",",skiprows=1) X = dataset[:,0:17] scaler = MinMaxScaler(feature_range=(0, 1)) X = scaler.fit_transform(X) y = scaler.fit_transform(y.reshape(-1, 1)) # pred_Y = model.predict(X) print("Predicted value:", pred_Y) from sklearn.metrics import mean_squared_error, r2_score # y_true是真实值,y_pred是预测值 # 计算均方误差 y_true = dataset[:,-1] mse = mean_squared_error(y_true, pred_Y) # 计算决定系数 r2 = r2_score(y_true, pred_Y) # 输出均方误差和决定系数 print("均方误差: %.2f" % mse) print("决定系数: %.2f" % r2) import matplotlib.pyplot as plt plt.scatter(y_true, pred_Y) # 添加x轴标签 plt.xlabel('真实值') # 添加y轴标签 plt.ylabel('预测值') # 添加图标题 plt.title('真实值与预测值的散点图') # 显示图像 plt.show()请你优化一下这段代码,尤其是归一化和反归一化过程

import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit #position plt.close('all') data=np.loadtxt('DATAA (1).txt',delimiter=',') t=data[:,0] x=data[:,1] t = t[130:790] x = x[130:790] plt.figure() plt.plot(t,x) plt.xlabel('time') plt.ylabel('position') max_val=max(x) max_i=list(x).index(max_val) #position up plt.figure() t_up=t[:max_i] x_up=x[:max_i] plt.plot(t_up,x_up,'r*') def fit1(t,v0,a1,x0): return x0+v0t+0.5a1t**2 popt,pcov = curve_fit(fit1, t_up, x_up) plt.plot(t_up, fit1(t_up,popt),'k', linewidth=2) #position down plt.figure() t_down=t[max_i:] x_down=x[max_i:] plt.plot(t_down,x_down,'r') popt,pcov = curve_fit(fit1, t_down, x_down) plt.plot(t_down, fit1(t_down,popt),'k', linewidth=2) #velocity n1=20 data=[] delta=t[1]-t[0] for i in range (n1,len(t)-n1): deri=(x[i+n1]-x[i-n1])/(2n1delta) data.append(deri) v=np.array(data) t= t[n1:-n1] plt.figure() plt.plot(t,v,'r*') #velocity up plt.figure() t_up=t[:max_i-n1] v_up=v[:max_i-n1] plt.plot(t_up,v_up,'r*') def fit2(t,v0,a): return v0+at popt,pcov = curve_fit(fit2, t_up, v_up) plt.plot(t_up, fit2(t_up,popt),'k', linewidth=2) #velocity down plt.figure() t_down=t[max_i-n1:] v_down=v[max_i-n1:] plt.plot(t_down,v_down,'r') popt,pcov = curve_fit(fit2, t_down, v_down) plt.plot(t_down, fit2(t_down,popt),'k', linewidth=2) #acceleration n2=2 data2=[] for i in range (n2,len(v)-n2): deri=(v[i+n2]-v[i-n2])/(2n2delta) data2.append(deri) a=np.array(data2) t= t[n2:-n2] plt.figure() plt.plot(t,a,'r*') import statistics a_up_mean=statistics.mean(a[:max_i-n1-n2]) a_down_mean=statistics.mean(a[max_i-n1-n2:])出现这个错误ValueError: could not convert string to float: '0.008\t-1.2126E-4'如何改进。

import numpy as np import matplotlib.pyplot as plt from sklearn import svm from sklearn.datasets import make_blobs from sklearn import model_selection from sklearn.metrics import f1_score def show_svm(a, b, bt): plt.figure(bt) plt.title('SVM with ' + bt) # 建立图像坐标 axis = plt.gca() plt.scatter(a[:, 0], a[:, 1], c=b, s=30) xlim = [a[:, 0].min(), a[:, 0].max()] ylim = [a[:, 1].min(), a[:, 1].max()] # 生成两个等差数列 xx = np.linspace(xlim[0], xlim[1], 50) yy = np.linspace(ylim[0], ylim[1], 50) X, Y = np.meshgrid(xx, yy) xy = np.vstack([X.ravel(), Y.ravel()]).T Z = clf.decision_function(xy).reshape(X.shape) # 画出分界线 axis.contour(X, Y, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']) axis.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=200, linewidths=1, facecolors='none') if __name__ == '__main__': # data = np.loadtxt('separable_data.txt', delimiter=',') # data = np.loadtxt('non_separable_data.txt', delimiter=',') # data = np.loadtxt('banknote.txt', delimiter=',') data = np.loadtxt('ionosphere.txt', delimiter=',') # data = np.loadtxt('wdbc.txt', delimiter=',') X = data[:, 0:-1] y = data[:, -1] """标签中有一类标签为1""" y = y + 1 ymin = min(y) if not (1 in set(y)): ll = max(list(set(y))) + 1 for i in range(len(y)): if y[i] == ymin: y[i] = 1 # 建立一个线性核(多项式核)的SVM clf = svm.SVC(kernel='linear') clf.fit(X, y) """显示所有数据用于训练后的可视化结果""" show_svm(X, y, 'all dataset') """divide the data into two sections: training and test datasets""" X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.1, random_state=42) """training""" clf = svm.SVC(kernel='linear')#线性内核 # clf = svm.SVC(kernel='poly')# 多项式内核 # clf = svm.SVC(kernel='sigmoid')# Sigmoid内核 clf.fit(X_train, y_train) # show_svm(X_train, y_train, 'training dataset') """predict""" pred = clf.predict(X_test) pred = np.array(pred) y_test = np.array(y_test) print(f'SVM 的预测结果 f1-score:{f1_score(y_test, pred)}') # plt.show()结果与分析

import pandas as pd data = pd.read_csv('DATAA (1).txt', delimiter='\t') t = data.iloc[:, 0] x = data.iloc[:, 1] # 接下来的代码和之前一样 import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit #position plt.close('all') data=np.loadtxt('DATAA (1).txt',delimiter=',') t=data[:,0] x=data[:,1] t = t[130:790] x = x[130:790] plt.figure() plt.plot(t,x) plt.xlabel('time') plt.ylabel('position') max_val=max(x) max_i=list(x).index(max_val) #position up plt.figure() t_up=t[:max_i] x_up=x[:max_i] plt.plot(t_up,x_up,'r*') def fit1(t,v0,a1,x0): return x0+v0*t+0.5*a1*t**2 popt,pcov = curve_fit(fit1, t_up, x_up) plt.plot(t_up, fit1(t_up,*popt),'k', linewidth=2) #position down plt.figure() t_down=t[max_i:] x_down=x[max_i:] plt.plot(t_down,x_down,'r*') popt,pcov = curve_fit(fit1, t_down, x_down) plt.plot(t_down, fit1(t_down,*popt),'k', linewidth=2) #velocity n1=20 data=[] delta=t[1]-t[0] for i in range (n1,len(t)-n1): deri=(x[i+n1]-x[i-n1])/(2*n1*delta) data.append(deri) v=np.array(data) t= t[n1:-n1] plt.figure() plt.plot(t,v,'r*') #velocity up plt.figure() t_up=t[:max_i-n1] v_up=v[:max_i-n1] plt.plot(t_up,v_up,'r*') def fit2(t,v0,a): return v0+a*t popt,pcov = curve_fit(fit2, t_up, v_up) plt.plot(t_up, fit2(t_up,*popt),'k', linewidth=2) #velocity down plt.figure() t_down=t[max_i-n1:] v_down=v[max_i-n1:] plt.plot(t_down,v_down,'r*') popt,pcov = curve_fit(fit2, t_down, v_down) plt.plot(t_down, fit2(t_down,*popt),'k', linewidth=2) #acceleration n2=2 data2=[] for i in range (n2,len(v)-n2): deri=(v[i+n2]-v[i-n2])/(2*n2*delta) data2.append(deri) a=np.array(data2) t= t[n2:-n2] plt.figure() plt.plot(t,a,'r*') import statistics a_up_mean=statistics.mean(a[:max_i-n1-n2]) a_down_mean=statistics.mean(a[max_i-n1-n2:])。解决 ValueError: could not convert string to float: '0.008\t-1.2126E-4'问题

给出各拟合曲线的误差MSE:import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.stats import zscore import numpy as np from sklearn import linear_model from sklearn.preprocessing import PolynomialFeatures data = np.loadtxt('tb.txt', delimiter=',') # a=data[:,0] area = data[:, 0] price = data[:, 1] length = len(area) area = np.array(area).reshape([length, 1]) price = np.array(price) minx = min(area) maxx = max(area) x = np.arange(minx, maxx).reshape([-1, 1]) poly=PolynomialFeatures(degree=2) poly3=PolynomialFeatures(degree=3) poly4=PolynomialFeatures(degree=4) #poly5=PolynomialFeatures(degree=5) area_poly=poly.fit_transform(area) area_poly3=poly3.fit_transform(area) area_poly4=poly4.fit_transform(area) linear2 = linear_model.LinearRegression() linear2.fit(area_poly, price) linear3 = linear_model.LinearRegression() linear3.fit(area_poly3, price) linear4 = linear_model.LinearRegression() linear4.fit(area_poly4, price) #查看回归方程系数 print('Cofficients:',linear4.coef_) #查看回归方程截距 print('intercept',linear4.intercept_) plt.scatter(area, price, color='red') plt.plot(x, linear2.predict(poly.fit_transform(x)), color='blue') plt.plot(x, linear3.predict(poly3.fit_transform(x)), linestyle='--') plt.plot(x, linear4.predict(poly4.fit_transform(x)), linestyle='-.') plt.legend(['degree=0','degree=2','degree=3','degree=4']) plt.xlabel('Year') plt.ylabel('Price') plt.show() # 2022 year_2022 = np.array([[2022]]) area_2022_poly = poly.transform(year_2022) area_2022_poly3 = poly3.transform(year_2022) area_2022_poly4 = poly4.transform(year_2022) price_2022_degree2 = linear2.predict(area_2022_poly) price_2022_degree3 = linear3.predict(area_2022_poly3) price_2022_degree4 = linear4.predict(area_2022_poly4) print("Predicted price in 2022 (degree=2):", price_2022_degree2[0]) print("Predicted price in 2022 (degree=3):", price_2022_degree3[0]) print("Predicted price in 2022 (degree=4):", price_2022_degree4[0]) # 2023 year_2023 = np.array([[2023]]) area_2023_poly = poly.transform(year_2023) area_2023_poly3 = poly3.transform(year_2023) area_2023_poly4 = poly4.transform(year_2023) price_2023_degree2 = linear2.predict(area_2023_poly) price_2023_degree3 = linear3.predict(area_2023_poly3) price_2023_degree4 = linear4.predict(area_2023_poly4) print("Predicted price in 2023 (degree=2):", price_2023_degree2[0]) print("Predicted price in 2023 (degree=3):", price_2023_degree3[0]) print("Predicted price in 2023 (degree=4):", price_2023_degree4[0])

最新推荐

recommend-type

###对华为OD分布式操作系统的详细介绍

华为OD
recommend-type

2110220116吴骏博.py

2110220116吴骏博.py
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步