dataloader = 'val'是什么
时间: 2024-06-02 16:07:21 浏览: 183
意思?
dataloader = 'val'大概意思是在数据加载器(dataloader)中,使用的是验证集(val)的数据。在深度学习中,我们通常将数据集分为训练集、验证集和测试集。训练集是用来训练模型的,验证集则是用来调整模型超参数或者模型结构的,测试集则是用来测试模型性能的。在实际操作中,通常我们会使用数据加载器来将数据传入模型进行训练或测试。而dataloader = 'val'则是指定加载验证集的数据。
相关问题
class Trainer(object): def __init__(self, model, optim, device, train_dataloader, val_dataloader, test_dataloader, opt_da=None, discriminator=None, experiment=None, alpha=1, **config): self.model = model self.optim = optim self.device = device self.epochs = config["SOLVER"]["MAX_EPOCH"] self.current_epoch = 0 self.train_dataloader = train_dataloader self.val_dataloader = val_dataloader self.test_dataloader = test_dataloader self.is_da = config["DA"]["USE"] self.alpha = alpha self.n_class = config["DECODER"]["BINARY"]怎么理解
这段代码定义了一个训练器(Trainer)类,并初始化了一些变量和参数,包括神经网络模型、优化器、设备、训练、验证、测试数据集以及一些其他配置参数。同时,还包括一个可选参数discriminator和experiment,以及一个alpha参数,用于指定一个加权值(例如在对抗性训练中使用)。最后,n_class参数用于指定模型是否有二进制分类。这个训练器类的作用是用来训练模型、评估性能以及进行推理测试。
data = dict( videos_per_gpu=8, workers_per_gpu=2, val_dataloader=dict( videos_per_gpu=1, workers_per_gpu=1 ), test_dataloader=dict( videos_per_gpu=1, workers_per_gpu=1 ), train=dict( type=dataset_type, ann_file=ann_file_train, data_prefix=data_root, pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=ann_file_val, data_prefix=data_root_val, pipeline=val_pipeline), test=dict( type=dataset_type, ann_file=ann_file_test, data_prefix=data_root_val, pipeline=test_pipeline)) evaluation = dict( interval=5, metrics=['top_k_accuracy', 'mean_class_accuracy'])
这段代码是一个字典,定义了数据集的一些参数和评估的一些参数。其中,数据集的参数包括:
- 每个GPU上的视频数量(videos_per_gpu)
- 每个GPU上的工作进程数量(workers_per_gpu)
- 验证集数据加载器的参数,包括每个GPU上的视频数量和工作进程数量
- 测试集数据加载器的参数,包括每个GPU上的视频数量和工作进程数量
- 训练集的类型(type)、注释文件(ann_file_train)、数据前缀(data_prefix)和数据处理管道(pipeline)
- 验证集的类型(type)、注释文件(ann_file_val)、数据前缀(data_prefix_val)和数据处理管道(pipeline)
- 测试集的类型(type)、注释文件(ann_file_test)、数据前缀(data_prefix_val)和数据处理管道(pipeline)
评估参数包括:
- 评估间隔(interval)
- 评估指标列表(metrics),包括top_k_accuracy和mean_class_accuracy。
阅读全文