雅可比伪逆求六自由度机械臂逆运动学问题,matlab代码
时间: 2023-09-13 22:13:42 浏览: 113
matlab资源 三自由度串联臂机器人的正运动学、逆运动学和速度运动学(Matlab) 仅供学习参考用代码.zip
以下是使用雅可比伪逆求解六自由度机械臂逆运动学问题的matlab代码:
```
% 机械臂DH参数
L1 = 0.5;
L2 = 0.5;
L3 = 0.5;
L4 = 0.5;
L5 = 0.5;
L6 = 0.5;
% 初始机械臂关节角度
theta1 = 0;
theta2 = 0;
theta3 = 0;
theta4 = 0;
theta5 = 0;
theta6 = 0;
% 目标末端执行器位置
x = 0.5;
y = 0.5;
z = 0.5;
% 迭代次数
num_iter = 100;
% 迭代误差
epsilon = 0.001;
for i = 1:num_iter
% 计算机械臂末端执行器位置
T = forward_kinematics(theta1, theta2, theta3, theta4, theta5, theta6);
px = T(1,4);
py = T(2,4);
pz = T(3,4);
% 计算机械臂雅可比矩阵
J = jacobian(theta1, theta2, theta3, theta4, theta5, theta6);
% 计算雅可比矩阵的伪逆
J_pinv = pinv(J);
% 计算机械臂末端执行器位置误差
error = norm([x;y;z] - [px;py;pz]);
% 如果误差小于迭代误差,则停止迭代
if error < epsilon
break;
end
% 计算关节角度增量
delta_theta = J_pinv * ([x;y;z] - [px;py;pz]);
% 更新关节角度
theta1 = theta1 + delta_theta(1);
theta2 = theta2 + delta_theta(2);
theta3 = theta3 + delta_theta(3);
theta4 = theta4 + delta_theta(4);
theta5 = theta5 + delta_theta(5);
theta6 = theta6 + delta_theta(6);
end
% 显示最终关节角度
fprintf('theta1 = %.2f\n', theta1);
fprintf('theta2 = %.2f\n', theta2);
fprintf('theta3 = %.2f\n', theta3);
fprintf('theta4 = %.2f\n', theta4);
fprintf('theta5 = %.2f\n', theta5);
fprintf('theta6 = %.2f\n', theta6);
% 正向运动学函数
function T = forward_kinematics(theta1, theta2, theta3, theta4, theta5, theta6)
% 机械臂DH参数
L1 = 0.5;
L2 = 0.5;
L3 = 0.5;
L4 = 0.5;
L5 = 0.5;
L6 = 0.5;
% 计算机械臂正向运动学矩阵
T01 = DH(L1, 0, pi/2, theta1);
T12 = DH(L2, 0, 0, theta2);
T23 = DH(0, L3, pi/2, theta3);
T34 = DH(L4, 0, -pi/2, theta4);
T45 = DH(L5, 0, pi/2, theta5);
T56 = DH(0, L6, 0, theta6);
T = T01 * T12 * T23 * T34 * T45 * T56;
end
% DH函数
function T = DH(a, d, alpha, theta)
T = [cos(theta), -sin(theta)*cos(alpha), sin(theta)*sin(alpha), a*cos(theta);
sin(theta), cos(theta)*cos(alpha), -cos(theta)*sin(alpha), a*sin(theta);
0, sin(alpha), cos(alpha), d;
0, 0, 0, 1];
end
% 雅可比矩阵函数
function J = jacobian(theta1, theta2, theta3, theta4, theta5, theta6)
% 机械臂DH参数
L1 = 0.5;
L2 = 0.5;
L3 = 0.5;
L4 = 0.5;
L5 = 0.5;
L6 = 0.5;
% 计算机械臂正向运动学矩阵
T01 = DH(L1, 0, pi/2, theta1);
T12 = DH(L2, 0, 0, theta2);
T23 = DH(0, L3, pi/2, theta3);
T34 = DH(L4, 0, -pi/2, theta4);
T45 = DH(L5, 0, pi/2, theta5);
T56 = DH(0, L6, 0, theta6);
T06 = T01 * T12 * T23 * T34 * T45 * T56;
% 计算机械臂末端执行器位置
px = T06(1,4);
py = T06(2,4);
pz = T06(3,4);
% 计算机械臂末端执行器旋转矩阵
R06 = T06(1:3,1:3);
% 计算雅可比矩阵
Jv = [cross([0;0;1], [px;py;pz]), cross(R06(:,1), [px;py;pz]), cross(R06(:,2), [px;py;pz]), cross(R06(:,3), [px;py;pz]), R06(:,3), [0;0;0]];
Jw = [0, 0, 0, 0, 0, 1;
0, 0, 0, 0, -1, 0;
0, 0, 0, 1, 0, 0;
0, 0, -1, 0, 0, 0;
0, 1, 0, 0, 0, 0;
-1, 0, 0, 0, 0, 0];
J = [Jv; Jw];
end
```
在代码中,`forward_kinematics()`函数用于计算机械臂的正向运动学,`DH()`函数用于计算机械臂DH参数的变换矩阵,`jacobian()`函数用于计算机械臂的雅可比矩阵,主函数中的迭代部分使用了雅可比伪逆方法求解逆运动学问题。最终,程序输出了机械臂六个关节的最终角度。
阅读全文