解释一下这段代码,并每一句给出注释:def db_scan_new(mkpts, min_samples=5, max_dst=40): # min_samples = 6 # round(len(mkpt1) * 0.8) # max_dst = 40 # maximum distance between two samples db = DBSCAN(eps=max_dst, min_samples=min_samples).fit(mkpts) labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) n_noise_ = list(labels).count(-1) if n_clusters_ < 1: return None filtered_labels = [x for x in labels if x != -1] unique, counts = np.unique(filtered_labels, return_counts=True) T = 0.2 all_idxs = [] for lbl_idx in np.argsort(counts)[::-1]: if counts[lbl_idx] / counts.max() >= T: idxs = np.argwhere(filtered_labels == lbl_idx).flatten() all_idxs.extend(idxs) all_idxs = np.array(sorted(all_idxs)) dense_mkpts = mkpts[all_idxs] return dense_mkpts

时间: 2024-03-29 07:34:15 浏览: 167
这段代码实现了基于 DBSCAN 算法的密集聚类。以下是每句代码的注释: ```python def db_scan_new(mkpts, min_samples=5, max_dst=40): # 定义函数 db_scan_new,该函数接受一个名为 mkpts 的参数, # 以及两个可选参数 min_samples 和 max_dst,它们分别代表最小样本数和最大距离阈值。 # 默认情况下,min_samples 为 5,max_dst 为 40。 db = DBSCAN(eps=max_dst, min_samples=min_samples).fit(mkpts) # 使用 DBSCAN 算法进行聚类,其中 eps 参数设置为 max_dst,min_samples 参数设置为 min_samples。 # 将算法应用于 mkpts 数据集,并将结果存储在 db 变量中。 labels = db.labels_ # 获取每个点的聚类标签,存储在 labels 变量中。 n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) # 获取聚类数量,但会忽略噪声点(标签为 -1)。 n_noise_ = list(labels).count(-1) # 获取噪声点数量。 if n_clusters_ < 1: return None # 如果聚类数量小于 1,即没有聚类,则返回 None。 filtered_labels = [x for x in labels if x != -1] # 过滤掉噪声点,得到所有非噪声点的聚类标签。 unique, counts = np.unique(filtered_labels, return_counts=True) # 统计每个聚类中的点数。 T = 0.2 # 设置一个阈值,用于过滤掉点数过少的聚类。 all_idxs = [] # 存储所有密集聚类的点的索引。 for lbl_idx in np.argsort(counts)[::-1]: if counts[lbl_idx] / counts.max() >= T: # 如果该聚类的点数占所有聚类点数的比例大于等于阈值,则将该聚类的点的索引加入 all_idxs。 idxs = np.argwhere(filtered_labels == lbl_idx).flatten() all_idxs.extend(idxs) all_idxs = np.array(sorted(all_idxs)) # 对所有密集聚类的点的索引进行排序。 dense_mkpts = mkpts[all_idxs] # 根据索引获取所有密集聚类的点。 return dense_mkpts # 返回所有密集聚类的点作为结果。 ```
阅读全文

相关推荐

详细解释一下这段代码,每一句给出详细注解:for idx, image_size in enumerate(image_sizes): mkpts1_, mkpts2_ = superglue_inference(model, cache, fname1, fname2, image_size) if idx == 0: # first size -> ref, #1280 num_sg_matches = len(mkpts1_) if max(cache[fname1][image_size]['h'], cache[fname1][image_size]['w']) != image_size: mkpts1_[:,0] *= cache[fname1][image_size]['w']/cache[fname1][image_size]['w_r'] mkpts1_[:,1] *= cache[fname1][image_size]['h']/cache[fname1][image_size]['h_r'] if max(cache[fname2][image_size]['h'], cache[fname2][image_size]['w']) != image_size: mkpts2_[:,0] *= cache[fname2][image_size]['w']/cache[fname2][image_size]['w_r'] mkpts2_[:,1] *= cache[fname2][image_size]['h']/cache[fname2][image_size]['h_r'] mkpts1, mkpts2 = np.vstack([mkpts1, mkpts1_]), np.vstack([mkpts2, mkpts2_]) if num_sg_matches < n_matches: # return early, no extra matches needed return mkpts1, mkpts2, num_sg_matches for idx, image_size in enumerate(extra_image_sizes): if extra_matcher == 'GS': mkpts1_, mkpts2_ = run_gs(fname1, fname2, image_size) mkpts1, mkpts2 = np.vstack([mkpts1, mkpts1_]), np.vstack([mkpts2, mkpts2_]) if USE_ROI: cropped_img1, cropped_img2, shift_xy1, shift_xy2 = \ extract_crops_via_cluster(fname1, fname2, mkpts1, mkpts2) mkpts_crop1, mkpts_crop2 = superglue_inference(model, cache, fname1, fname2, image_size) x1_min, y1_min = shift_xy1 x2_min, y2_min = shift_xy2 mkpts_crop1[:,0] += x1_min mkpts_crop1[:,1] += y1_min mkpts_crop2[:,0] += x2_min mkpts_crop2[:,1] += y2_min mkpts1, mkpts2 = np.vstack([mkpts1, mkpts_crop1]), np.vstack([mkpts2, mkpts_crop2]) return mkpts1, mkpts2, num_sg_matches

详细解释一下这段代码,每一句给出详细注解:def superglue_inference(model, cache, fname1, fname2, image_size): # SuperPoint if 'keypoints' not in cache[fname1][image_size]: with torch.no_grad(): pred = model.superpoint({'image': cache[fname1][image_size]['img']}) cache[fname1][image_size] = {**cache[fname1][image_size], **{'keypoints': torch.stack(pred['keypoints']), 'scores': torch.stack(pred['scores']), 'descriptors': torch.stack(pred['descriptors'])}} if 'keypoints' not in cache[fname2][image_size]: with torch.no_grad(): pred = model.superpoint({'image': cache[fname2][image_size]['img']}) cache[fname2][image_size] = {**cache[fname2][image_size], **{'keypoints': torch.stack(pred['keypoints']), 'scores': torch.stack(pred['scores']), 'descriptors': torch.stack(pred['descriptors'])}} # SuperGlue with torch.no_grad(): data = { 'image0': cache[fname1][image_size]['img'], 'image1': cache[fname2][image_size]['img'], 'keypoints0': cache[fname1][image_size]['keypoints'], 'keypoints1': cache[fname2][image_size]['keypoints'], 'scores0': cache[fname1][image_size]['scores'], 'scores1': cache[fname2][image_size]['scores'], 'descriptors0': cache[fname1][image_size]['descriptors'], 'descriptors1': cache[fname2][image_size]['descriptors'] } pred = model.superglue(data) kpts1, kpts2 = cache[fname1][image_size]['keypoints'][0].cpu().numpy(), cache[fname2][image_size]['keypoints'][0].cpu().numpy() matches = pred['matches0'][0].cpu().numpy() valid_matches = matches > -1 mkpts1 = kpts1[valid_matches].astype(np.float32) mkpts2 = kpts2[matches[valid_matches]].astype(np.float32) return mkpts1, mkpts2

最新推荐

recommend-type

CPPC++_PCLPoint Cloud Library点云库学习记录.zip

CPPC++_PCLPoint Cloud Library点云库学习记录
recommend-type

基于Python的百度百科爬虫.zip

基于Python的百度百科爬虫
recommend-type

CPPC++_Qt 之 GUI 控件使用 网络 架构原理 运行机制理解DTK 重绘控件方式的框架解析IDE 技巧.zip

CPPC++_Qt 之 GUI 控件使用 网络 架构原理 运行机制理解DTK 重绘控件方式的框架解析IDE 技巧
recommend-type

10020.doc

10020
recommend-type

使用加权最小二乘法和加权最小最大法进行优Matlab实现.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

前端协作项目:发布猜图游戏功能与待修复事项

资源摘要信息:"People-peephole-frontend是一个面向前端开发者的仓库,包含了一个由Rails和IOS团队在2015年夏季亚特兰大Iron Yard协作完成的项目。该仓库中的项目是一个具有特定功能的应用,允许用户通过iPhone或Web应用发布图像,并通过多项选择的方式让用户猜测图像是什么。该项目提供了一个互动性的平台,使用户能够通过猜测来获取分数,正确答案将提供积分,并防止用户对同一帖子重复提交答案。 当前项目存在一些待修复的错误,主要包括: 1. 答案提交功能存在问题,所有答案提交操作均返回布尔值true,表明可能存在逻辑错误或前端与后端的数据交互问题。 2. 猜测功能无法正常工作,这可能涉及到游戏逻辑、数据处理或是用户界面的交互问题。 3. 需要添加计分板功能,以展示用户的得分情况,增强游戏的激励机制。 4. 删除帖子功能存在损坏,需要修复以保证应用的正常运行。 5. 项目的样式过时,需要更新以反映跨所有平台的流程,提高用户体验。 技术栈和依赖项方面,该项目需要Node.js环境和npm包管理器进行依赖安装,因为项目中使用了大量Node软件包。此外,Bower也是一个重要的依赖项,需要通过bower install命令安装。Font-Awesome和Materialize是该项目用到的前端资源,它们提供了图标和界面组件,增强了项目的视觉效果和用户交互体验。 由于本仓库的主要内容是前端项目,因此JavaScript知识在其中扮演着重要角色。开发者需要掌握JavaScript的基础知识,以及可能涉及到的任何相关库或框架,比如用于开发Web应用的AngularJS、React.js或Vue.js。同时,对于iOS开发,可能还会涉及到Swift或Objective-C等编程语言,以及相应的开发工具Xcode。对于Rails,开发者则需要熟悉Ruby编程语言以及Rails框架的相关知识。 开发流程中可能会使用的其他工具包括: - Git:用于版本控制和代码管理。 - HTML/CSS:用于构建网页结构和样式。 - Webpack或Gulp:用于项目构建和优化流程。 - Babel:用于JavaScript代码的兼容性处理。 - Linting工具:如ESLint,用于代码质量检查和维护代码风格一致性。 总结来看,People-peephole-frontend项目不仅涉及到了跨平台协作的经验分享,还提供了前端开发的学习和实践机会,尤其在交互设计、前端工程化、依赖管理及样式设计等方面。开发者可以通过参与该项目的修复和完善工作,提高自身技能并积累宝贵的项目经验。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【高斯信道信号编码优化】:4大方法优化Chirp信号编码过程

![高斯信道下的chirp信号解调](https://img-blog.csdnimg.cn/d37646d14e4e4b51b01e617b59167c74.png) # 1. 高斯信道与Chirp信号编码基础 ## 简介 在现代通信领域,信息的传递无处不在,而保障信息传递的清晰与高效是通信技术的核心挑战之一。高斯信道作为通信系统中最常见和基础的模型,为我们理解和优化信号传输提供了重要的理论支持。Chirp信号,以其独特的频谱扩展特性,在无线通信、雷达和声纳系统中发挥着越来越重要的作用。本章将介绍高斯信道的特性以及Chirp信号的基础知识,为读者搭建起后续章节深入探讨优化方法的理论基础。
recommend-type

对给定图,实现图的深度优先遍历和广度优先遍历。以邻接表或邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列,并调试算法。使用C语言

在C语言中,我们可以使用邻接表或邻接矩阵来存储图的数据结构。这里我将简单介绍如何实现深度优先搜索(DFS)和广度优先搜索(BFS): **使用邻接表实现:** ```c #include <stdio.h> #include <stdlib.h> typedef struct Node { int val; struct Node* next; } Node; // 创建邻接列表表示图 Node* createAdjacencyList(int numNodes) { // 初始化节点数组 Node** adjList = malloc(sizeof(No
recommend-type

Spring框架REST服务开发实践指南

资源摘要信息: "在本教程中,我们将详细介绍如何使用Spring框架来构建RESTful Web服务,提供对Java开发人员的基础知识和学习参考。" 一、Spring框架基础知识 Spring是一个开源的Java/Java EE全功能栈(full-stack)应用程序框架和 inversion of control(IoC)容器。它主要分为以下几个核心模块: - 核心容器:包括Core、Beans、Context和Expression Language模块。 - 数据访问/集成:涵盖JDBC、ORM、OXM、JMS和Transaction模块。 - Web模块:提供构建Web应用程序的Spring MVC框架。 - AOP和Aspects:提供面向切面编程的实现,允许定义方法拦截器和切点来清晰地分离功能。 - 消息:提供对消息传递的支持。 - 测试:支持使用JUnit或TestNG对Spring组件进行测试。 二、构建RESTful Web服务 RESTful Web服务是一种使用HTTP和REST原则来设计网络服务的方法。Spring通过Spring MVC模块提供对RESTful服务的构建支持。以下是一些关键知识点: - 控制器(Controller):处理用户请求并返回响应的组件。 - REST控制器:特殊的控制器,用于创建RESTful服务,可以返回多种格式的数据(如JSON、XML等)。 - 资源(Resource):代表网络中的数据对象,可以通过URI寻址。 - @RestController注解:一个方便的注解,结合@Controller注解使用,将类标记为控制器,并自动将返回的响应体绑定到HTTP响应体中。 - @RequestMapping注解:用于映射Web请求到特定处理器的方法。 - HTTP动词(GET、POST、PUT、DELETE等):在RESTful服务中用于执行CRUD(创建、读取、更新、删除)操作。 三、使用Spring构建REST服务 构建REST服务需要对Spring框架有深入的理解,以及熟悉MVC设计模式和HTTP协议。以下是一些关键步骤: 1. 创建Spring Boot项目:使用Spring Initializr或相关构建工具(如Maven或Gradle)初始化项目。 2. 配置Spring MVC:在Spring Boot应用中通常不需要手动配置,但可以进行自定义。 3. 创建实体类和资源控制器:实体类映射数据库中的数据,资源控制器处理与实体相关的请求。 4. 使用Spring Data JPA或MyBatis进行数据持久化:JPA是一个Java持久化API,而MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 5. 应用切面编程(AOP):使用@Aspect注解定义切面,通过切点表达式实现方法的拦截。 6. 异常处理:使用@ControllerAdvice注解创建全局异常处理器。 7. 单元测试和集成测试:使用Spring Test模块进行控制器的测试。 四、学习参考 - 国际奥委会:可能是错误的提及,对于本教程没有相关性。 - AOP:面向切面编程,是Spring的核心功能之一。 - MVC:模型-视图-控制器设计模式,是构建Web应用的常见架构。 - 道:在这里可能指学习之道,或者是学习Spring的原则和最佳实践。 - JDBC:Java数据库连接,是Java EE的一部分,用于在Java代码中连接和操作数据库。 - Hibernate:一个对象关系映射(ORM)框架,简化了数据库访问代码。 - MyBatis:一个半自动化的ORM框架,它提供了更细致的SQL操作方式。 五、结束语 以上内容为《learnSpring:学习春天》的核心知识点,涵盖了从Spring框架的基础知识、RESTful Web服务的构建、使用Spring开发REST服务的方法,以及与学习Spring相关的技术栈介绍。对于想要深入学习Java开发,特别是RESTful服务开发的开发者来说,这是一份非常宝贵的资源。