mask_images, _ = next(iter(data_setf))
时间: 2024-06-05 16:10:58 浏览: 92
可以理解为,使用了一个名为 "data_setf" 的数据集去获取这个 "mask_images" 变量,通过 "next(iter())" 将这个数据集中的第一个元素 (通常为一个 batch) 取出来,而 "_" 表示我们并不需要返回的另外一个变量的值。具体的数据集和代码实现,需要看具体的上下文。
相关问题
val_data_iter = iter(val_loader) val_image, val_label = next(val_data_iter)代码解释
这段代码是用来从验证集数据加载器中获取下一个批次的数据。在这里,我们首先使用`iter(val_loader)`将验证集数据加载器转换为一个迭代器对象。然后,我们使用`next(val_data_iter)`从迭代器中获取下一个批次的数据。该批次包含两个张量:一个是图像数据,另一个是相应的标签。这些数据可以用于模型的验证或测试。
解读这段代码def val(val_set, max_iter=100, flag=False): print('Start val') data_loader = torch.utils.data.DataLoader( val_set, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers)) val_iter = iter(data_loader) n_correct = 0 loss_avg = utils.averager() if not flag: max_iter = min(max_iter, len(data_loader)) else: max_iter = max(max_iter, len(data_loader)) for i in range(max_iter): # data = val_iter.next() # # data = next(val_iter) # try: # data=next(val_iter) # except StopIteration: # return try: data = val_iter.next() except: val_iter = iter(data_loader) # 再次读取,获取数据 data = val_iter.next() cpu_images, cpu_texts = data batch_size = cpu_images.size(0) utils.loadData(image, cpu_images) t, l = converter.encode(cpu_texts) utils.loadData(text, t) utils.loadData(length, l) with torch.no_grad(): crnn.eval() preds = crnn(image) crnn.train() preds_size = torch.IntTensor([preds.size(0)] * batch_size) cost = criterion(preds, text, preds_size, length) loss_avg.add(cost) _, preds = preds.max(2) preds = preds.transpose(1, 0).contiguous().view(-1) sim_preds = converter.decode(preds.data, preds_size.data, raw=False) for pred, target in zip(sim_preds, cpu_texts): if pred == target: n_correct += 1
这段代码是一个用于验证模型的函数。它接收一个数据集 `val_set`,将其封装成一个 `DataLoader` 对象,并迭代 `max_iter` 次进行验证。如果 `flag` 为 `False`,则 `max_iter` 不得超过数据集的长度;否则 `max_iter` 不得小于数据集的长度。在每次迭代中,函数从 `val_iter` 中获取一个批次的数据,并将其传入模型进行预测。然后计算预测结果与真实标签之间的损失,并将其加入到 `loss_avg` 中。同时,函数还统计了预测正确的数量 `n_correct`。最后,函数返回 `n_correct` 和 `loss_avg`。
阅读全文