ratio = 4 small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch] net = vgg(small_conv_arch) lr, num_epochs, batch_size = 0.05, 10, 128 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224) d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

时间: 2024-04-28 07:19:10 浏览: 9
这段代码是一个使用VGG网络在Fashion-MNIST数据集上进行训练的示例。首先,它将给定的卷积结构(conv_arch)缩小了4倍(ratio=4),得到了一个较小的卷积结构(small_conv_arch)。然后,它使用这个较小的卷积结构构造了一个VGG网络(net)。接着,它使用d2l.load_data_fashion_mnist函数加载Fashion-MNIST数据集,并指定了批量大小和图像大小。最后,它使用d2l.train_ch6函数对构造的VGG网络进行训练,并在训练和测试数据集上进行了评估。
相关问题

small_conv_arch = [(pair[0],pair[1]//ratio) for pair in conv_arch]

This code takes the convolutional architecture specified in the variable `conv_arch` and down-samples it by a factor of `ratio`. Specifically, it creates a new list `small_conv_arch` where each pair of `(num_filters, kernel_size)` in `conv_arch` has its second element (the kernel size) divided by `ratio`. The first element (the number of filters) remains the same. This results in a smaller architecture that reduces the spatial dimensions of the input more quickly, while maintaining the same number of filters.

import torch from torch import nn import d2l def vgg_block(num_convs, in_channels, out_channels): layers = [] for _ in range(num_convs): layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)) layers.append(nn.ReLU()) in_channels = out_channels layers.append(nn.MaxPool2d(kernel_size=2,stride=2)) return nn.Sequential(*layers) conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512)) def vgg(conv_arch): conv_blks = [] in_channels = 3 # 卷积层部分 for (num_convs, out_channels) in conv_arch: conv_blks.append(vgg_block(num_convs, in_channels, out_channels)) in_channels = out_channels return nn.Sequential( *conv_blks, nn.Flatten(), # 全连接层部分 nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5), nn.Linear(4096, 2048), nn.ReLU(), nn.Dropout(0.5), nn.Linear(2048, 10)) 这部分代码的参数如何修改会提高准确率,net = vgg(conv_arch) X = torch.randn(size=(1, 3, 224, 224)) for blk in net: X = blk(X) print(blk.__class__.__name__,'output shape:\t',X.shape) ratio = 4 small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch] net = vgg(small_conv_arch)这一部分代码有需要改哪些参数会提高准确率,lr, num_epochs, batch_size = 0.01, 60, 64 train_iter, test_iter = d2l.load_data_cifar10(batch_size, resize=224) d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())这一部分代码中的参怎么改会提高准确率?

对于第一部分代码,可以修改卷积层数量、卷积核大小、全连接层数量以及Dropout概率等参数来提高准确率。例如,可以增加卷积层数量、减小卷积核大小、增加全连接层数量或者减小Dropout概率等。 对于第二部分代码,可以调整小网络的结构、增加卷积层数量或者增加训练数据量等来提高准确率。 对于第三部分代码,可以尝试调整学习率、训练轮数、批量大小等参数来提高准确率。例如,可以增加学习率、增加训练轮数或者减小批量大小等。

相关推荐

torch.save(model.state_dict(), r'./saved_model/' + str(args.arch) + '_' + str(args.batch_size) + '_' + str(args.dataset) + '_' + str(args.epoch) + '.pth') # 计算GFLOPs flops = 0 for name, module in model.named_modules(): if isinstance(module, torch.nn.Conv2d): flops += module.weight.numel() * 2 * module.in_channels * module.out_channels * module.kernel_size[ 0] * module.kernel_size[1] / module.stride[0] / module.stride[1] elif isinstance(module, torch.nn.Linear): flops += module.weight.numel() * 2 * module.in_features start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) start_event.record() with torch.no_grad(): output = UNet(args,3,1).to(device) end_event.record() torch.cuda.synchronize() elapsed_time_ms = start_event.elapsed_time(end_event) gflops = flops / (elapsed_time_ms * 10 ** 6) print("GFLOPs: {:.2f}".format(gflops)) return best_iou, aver_iou, aver_dice, aver_hd, aver_accuracy, aver_recall, aver_precision, aver_f1score, aver_memory, fps, parameters, gflops出现错误 best_iou,aver_iou,aver_dice,aver_hd, aver_accuracy, aver_recall, aver_precision, aver_f1score, aver_memory, FPS, parameters, gflops = val(model,best_iou,val_dataloader) File "D:/BaiduNetdiskDownload/0605_ghostv2unet _tunnelcrack/ghostunet++/UNET++/main.py", line 143, in val return best_iou, aver_iou, aver_dice, aver_hd, aver_accuracy, aver_recall, aver_precision, aver_f1score, aver_memory, fps, parameters, gflops UnboundLocalError: local variable 'gflops' referenced before assignment怎么修改

最新推荐

recommend-type

网络编程网络编程网络编程

网络编程网络编程网络编程网络编程
recommend-type

setuptools-5.4.zip

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

基于树莓派智能小车(H5页面操作移动+实时显示摄像头内容+各类传感器)源码+详细文档+全部资料齐全 高分项目.zip

【资源说明】 基于树莓派智能小车(H5页面操作移动+实时显示摄像头内容+各类传感器)源码+详细文档+全部资料齐全 高分项目.zip基于树莓派智能小车(H5页面操作移动+实时显示摄像头内容+各类传感器)源码+详细文档+全部资料齐全 高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

2024-01-03-【办公自动化】Python执行Windows命令.md

2024-01-03-【办公自动化】Python执行Windows命令
recommend-type

基于FPGA的FS-FBMC调制器的设计源码+全部资料齐全.zip

【资源说明】 基于FPGA的FS-FBMC调制器的设计源码+全部资料齐全.zip基于FPGA的FS-FBMC调制器的设计源码+全部资料齐全.zip 【备注】 1、该项目是高分课程设计项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过mac/window10/11/linux测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也可作为课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。