F={AB→C,BC→D,ACD→B,D→EG,BE→C,CG→BD},计算与其等价的最小依赖集。

时间: 2023-11-18 10:19:34 浏览: 183
我们可以使用以下步骤来计算与F等价的最小依赖集: 1. 计算F的闭包,得到所有可以推导出来的依赖关系。具体步骤如下: - AB+ = AB - BC+ = BCD - ACD+ = ABCD - D+ = DEG - BE+ = BCE - CG+ = ABCDG 2. 对于F中的每个依赖关系X→Y,检查X的闭包是否包含Y。如果是,则可以从F中删除此依赖关系。具体步骤如下: - AB→C:AB+ = AB,C∉AB+,保留依赖关系。 - BC→D:BC+ = BCD,D∈BC+,删除依赖关系。 - ACD→B:ACD+ = ABCD,B∈ACD+,删除依赖关系。 - D→EG:D+ = DEG,E∈D+,G∈D+,删除依赖关系。 - BE→C:BE+ = BCE,C∈BE+,删除依赖关系。 - CG→BD:CG+ = ABCDG,B∈CG+,D∈CG+,保留依赖关系。 3. 对于剩余的依赖关系,检查是否可以使用前缀闭包来替代。如果可以,则可以从F中删除此依赖关系。具体步骤如下: - AB→C:没有可以使用前缀闭包替代的依赖关系。 - CG→BD:没有可以使用前缀闭包替代的依赖关系。 因此,与F等价的最小依赖集为: {AB→C,CG→BD}
相关问题

设U={A,B,C,D,E,,G},F={ AB→C,C→A,BC→D,ACD→B,D→EG,BE→C,CG→BD,CE→AG } 求(BD)F+。

首先,(BD)+ 表示经过多次推导,可以得到 BD 的所有函数依赖集合。因此,我们需要先求出 F 的闭包。 对于 F 中的每个函数依赖: - AB→C:由于 C 已经在右侧,则闭包为 AB→C。 - C→A:由于 A 已经在左侧,则闭包为空。 - BC→D:由于 D 已经在右侧,则闭包为 BC→D。 - ACD→B:由于 B 已经在右侧,则闭包为 ACD→B。 - D→EG:由于 E 和 G 都不在右侧,则闭包为空。 - BE→C:由于 C 已经在右侧,则闭包为 BE→C。 - CG→BD:由于 B 和 D 都已经在右侧,则闭包为 CG→BD。 - CE→AG:由于 A 和 G 都不在右侧,则闭包为空。 因此,F 的闭包为:AB→C,BC→D,ACD→B,BE→C,CG→BD。 接下来,我们需要找到所有能推导出 BD 的函数依赖: - AB→C,BC→D,则可以推导出 ABD→CD。 - ACD→B,BE→C,则可以推导出 ABDE→BCD。 - CG→BD,则可以推导出 ABDG→BCDG。 因此,(BD)+ 的函数依赖集合为:ABD→CD,ABDE→BCD,ABDG→BCDG。 最后,我们需要化简函数依赖集合,去掉冗余的依赖: - ABD→CD 和 ABDE→BCD 中都包含了 ABD→BCD,因此可以去掉前两个依赖。 - ABDG→BCDG 中包含了 BD→G,因此可以去掉后者。 因此,(BD)+ 的函数依赖集合为:ABD→BCDG。

习题1:设U={A,B,C,D,E,G},F={AB→C,C→A,BC→D, ACD→B,D→EG,BE→C,CG→BD,CE→AG}求(BD)F+

首先,计算出所有满足右部为BD的函数依赖: - BC → D,因此 BD 可以由 B 和 C 推出。 - CG → BD,因此 BD 可以由 C 和 G 推出。 因此,(BD)F+ 的值可以由以下函数依赖推出: - B+ → BD - C+ → BD - G+ → BD 其中,B+ 表示能够由 B 推出的所有属性集合。同理,C+ 和 G+ 分别表示能够由 C 和 G 推出的所有属性集合。 现在我们来计算 B+: - 由 AB → C 可以推出 A+ → C,因此 A 可以被忽略。 - 由 ACD → B 可以推出 CD+ → B,因此 C 可以被忽略,而 D 可以被包含进 B+。 - 由 D → EG 可以推出 E+ → G,因此 E 可以被忽略。 综上,B+={D}。同理,可以计算出 C+={B,D} 和 G+={B,D}。 因此,(BD)F+ = B+ ∩ C+ ∩ G+ = {B,D}。
阅读全文

相关推荐

doc
最小函数依赖集   定义:如果函数依赖集F满足下列条件,则称F为最小函数依赖集或最小覆盖。   ① F中的任何一个函数依赖的右部仅含有一个属性;   ② F中不存在这样一个函数依赖X→A,使得F与F-{X→A}等价;   ③ F中不存在这样一个函数依赖X→A,X有真子集Z使得F-{X→A}∪{Z→A}与F等价。   算法:计算最小函数依赖集。   输入 一个函数依赖集   输出 F的一个等价的最小函数依赖集G   步骤:① 用分解的法则,使F中的任何一个函数依赖的右部仅含有一个属性;      ② 去掉多余的函数依赖:从第一个函数依赖X→Y开始将其从F中去掉,然后在剩下的函数依赖中求X的闭包X+,看X+是否包含Y,若是,则去掉X→Y;否则不能去掉,依次做下去。直到找不到冗余的函数依赖;      ③ 去掉各依赖左部多余的属性。一个一个地检查函数依赖左部非单个属性的依赖。例如XY→A,若要判Y为多余的,则以X→A代替XY→A是否等价?若A属于(X)+,则Y是多余属性,可以去掉。   举例:已知关系模式R,U={A,B,C,D,E,G},F={AB→C,D→EG,C→A,BE→C,BC→D,CG→BD,ACD→B,CE→AG},求F的最小函数依赖集。   解1:利用算法求解,使得其满足三个条件   ① 利用分解规则,将所有的函数依赖变成右边都是单个属性的函数依赖,得F为:F={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→B,CG→D,ACD→B,CE→A,CE→G}   ② 去掉F中多余的函数依赖   A.设AB→C为冗余的函数依赖,则去掉AB→C,得:F1={D→E,D→G,C→A,BE→C,BC→D,CG→B,CG→D,ACD→B,CE→A,CE→G} 闭包   计算(AB)F1+:设X(0)=AB   计算X(1):扫描F1中各个函数依赖,找到左部为AB或AB子集的函数依赖,因为找不到这样的函数依赖。故有X(1)=X(0)=AB,算法终止。   (AB)F1+= AB不包含C,故AB→C不是冗余的函数依赖,不能从F1中去掉。   B.设CG→B为冗余的函数依赖,则去掉CG→B,得:F2={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,ACD→B,CE→A,CE→G}   计算(CG)F2+:设X(0)=CG   计算X(1):扫描F2中的各个函数依赖,找到左部为CG或CG子集的函数依赖,得到一个C→A函数依赖。故有X(1)=X(0)∪A=CGA=ACG。   计算X(2):扫描F2中的各个函数依赖,找到左部为ACG或ACG子集的函数依赖,得到一个CG→D函数依赖。故有X(2)=X(1)∪D=ACDG。   计算X(3):扫描F2中的各个函数依赖,找到左部为ACDG或ACDG子集的函数依赖,得到两个ACD→B和D→E函数依赖。故有X(3)=X(2)∪BE=ABCDEG,因为X(3)=U,算法终止。   (CG)F2+=ABCDEG包含B,故CG→B是冗余的函数依赖,从F2中去掉。   C.设CG→D为冗余的函数依赖,则去掉CG→D,得:F3={AB→C,D→E,D→G,C→A,BE→C,BC→D,ACD→B,CE→A,CE→G}   计算(CG)F3+:设X(0)=CG   计算X(1):扫描F3中的各个函数依赖,找到左部为CG或CG子集的函数依赖,得到一个C→A函数依赖。故有X(1)=X(0)∪A=CGA=ACG。   计算X(2):扫描F3中的各个函数依赖,找到左部为ACG或ACG子集的函数依赖,因为找不到这样的函数依赖。故有X(2)=X(1),算法终止。(CG)F3+=ACG。   (CG)F3+=ACG不包含D,故CG→D不是冗余的函数依赖,不能从F3中去掉。   D.设CE→A为冗余的函数依赖,则去掉CE→A,得:F4={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,ACD→B,CE→G}   计算(CG)F4+:设X(0)=CE   计算X(1):扫描F4中的各个函数依赖,找到左部为CE或CE子集的函数依赖,得到一个C→A函数依赖。故有X(1)=X(0)∪A=CEA=ACE。   计算X(2):扫描F4中的各个函数依赖,找到左部为ACE或ACE子集的函数依赖,得到一个CE→G函数依赖。故有X(2)=X(1)∪G=ACEG。   计算X(3):扫描F4中的各个函数依赖,找到左部为ACEG或ACEG子集的函数依赖,得到一个CG→D函数依赖。故有X(3)=X(2)∪D=ACDEG。   计算X(4):扫描F4中的各个函数依赖,找到左部为ACDEG或ACDEG子集的函数依赖,得到一个ACD→B函数依赖。故有X(4)=X(3)∪B=ABCDEG。因为X(4)=U,算法终止。 (CE)F4+=ABCDEG包含A,故CE→A是冗余的函数依赖,从F4中去掉。 得到F4={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,ACD→B,CE→G}   ③ 去掉F4中各函数依赖左边多余的属性(只检查左部不是单个属性的函数依赖)由于C→A,函数依赖ACD→B中的属性A是多余的,去掉A得CD→B。 例如XY→A,若要判Y为多余的,则以X→A代替XY→A是否等价?若A属于(X)+,则Y是多余属性,可以去掉。   故最小函数依赖集为:F={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,CD→B,CE→G}

大家在看

recommend-type

西软S酒店管理软件V3.0说明书

西软foxhis酒店管理系统smart8说明书,包括前台预订、接待、收银、房务、销售、财务等各个部门的操作说明和关联,同时具有后台维护。
recommend-type

Qwen1.5大模型微调、基于PEFT框架LoRA微调,在数据集HC3-Chinese上实现文本分类。.zip

个人深耕AI大模型应用领域积累的成果,希望对您有所帮助。有大模型账号、环境问题、AI大模型技术应用落地方案等相关问题,欢迎详聊,能为您解决问题是我的荣幸! 个人深耕AI大模型应用领域积累的成果,希望对您有所帮助。有大模型账号、环境问题、AI大模型技术应用落地方案等相关问题,欢迎详聊,能为您解决问题是我的荣幸! 个人深耕AI大模型应用领域积累的成果,希望对您有所帮助。有大模型账号、环境问题、AI大模型技术应用落地方案等相关问题,欢迎详聊,能为您解决问题是我的荣幸! 个人深耕AI大模型应用领域积累的成果,希望对您有所帮助。有大模型账号、环境问题、AI大模型技术应用落地方案等相关问题,欢迎详聊,能为您解决问题是我的荣幸! 个人深耕AI大模型应用领域积累的成果,希望对您有所帮助。有大模型账号、环境问题、AI大模型技术应用落地方案等相关问题,欢迎详聊,能为您解决问题是我的荣幸! 个人深耕AI大模型应用领域积累的成果,希望对您有所帮助。有大模型账号、环境问题、AI大模型技术应用落地方案等相关问题,欢迎详聊,能为您解决问题是我的荣幸!
recommend-type

用单片机实现声级计智能

声级计又称噪声计,是用来测量声音的声压或声级的一种仪器。声级计可以用来测量机械噪声、车辆噪声、环境噪声以及其它各种噪声。声级计按其用途可分为普通声级计,脉冲声级计,分声级计等。
recommend-type

2_JFM7VX690T型SRAM型现场可编程门阵列技术手册.pdf

复旦微国产大规模FPGA JFM7VX690T datasheet 手册 资料
recommend-type

大型滑坡变形稳定性与降雨关系研究

大型灾害性滑坡预测问题是岩土力学的重要的应用性研究课题。对下铺子滑坡进行了详细的地质调查分析,在分析了降雨资料的基础上,利用变形监测资料,对受降雨影响下滑坡体稳定性进行分析,并分析降雨入渗时间、临界降雨量和降雨总量与滑坡体变形的关系,变形增量与降雨量的关系,其结果可以为选择滑坡治理措施提供依据,也为类似的滑坡地质灾害的治理积累经验。

最新推荐

recommend-type

python基于Django的购物商城系统源码+数据库+运行文档+接口文档.zip文件

python毕业设计-基于Django的购物商城系统源码+数据库+运行文档+接口文档.zip文件 该项目是个人项目源码,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!!!评审分达到95分以上。资源项目的难度比较适中 本项目前后端进行了分离,前端使用vue实现,并且前端代码已经打包好放在static目录下 后端使用django的views.py来制作api接口,具体请求接口可以查看API接口文档.md 环境要求:MySQL 8、python3.11、django4.2、pymysql 如何运行 1、下载本项目到你的电脑后解压 2、附加数据库 将根目录下的 sports_shop.sql 附加到你的mysql中 3、修改数据库连接语句 在sports_shop_backend_war/dao.py文件中,将登录名和密码修改为你mysql的配置 修改数据库连接语句 4、pip安装所需的库 pip install django==4.2 pip install pymysql 5、运行项目 前端已经写死了请求后端api的基准地址为http://127.0.0.1
recommend-type

松下FP-X的模拟量控制,程序,用于空调冷冻泵的 用AFPX -TC2模拟量输入和AFPX-DA2模拟量输出控制 变频冷冻泵的转速 本程序可手动、自动控制,简便易懂,

松下FP-X的模拟量控制,程序,用于空调冷冻泵的。 用AFPX -TC2模拟量输入和AFPX-DA2模拟量输出控制 变频冷冻泵的转速 本程序可手动、自动控制,简便易懂,
recommend-type

串口调试源码,个人学习整理,仅供参考

串口调试源码是计算机通信领域的一个重要工具,主要用于设备间的串行数据传输。在本例中,我们讨论的是一个由VC++编写的串口调试工具的源代码,该工具设计为单线程通信,特别适合于使用MFC(Microsoft Foundation Classes)进行编程的开发者。MFC是微软提供的一套C++类库,它封装了Windows API,简化了Windows应用程序的开发。通过将串口通信功能打包成一个类,这个源代码提供了易于使用的接口,降低了开发者在实现串口通信时的复杂性。 串口通信是计算机与其他设备之间进行数据交换的一种方式,常见于嵌入式系统、工业控制设备和一些实验装置中。串口通常使用RS-232标准,它定义了电压水平、信号线配置、数据速率等通信参数。在VC++中,实现串口通信通常需要操作Win32 API的CreateFile、SetCommState、ReadFile和WriteFile等函数。 SCOMMV2322可能是这个串口调试工具类库的名字,可能包含了一个或多个头文件(如SCOMMV23。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

使用PDE模型探索静电问题解决方案的实时脚本-泊松方程PDE模型-matlab

脚本探索了泊松方程的解,该方程控制着由导电表面定义的区域中的静电势,并包含二维电荷密度分布。它展示了如何为PDE模型定义非恒定电荷密度,并说明了如何自定义几何创建函数,如圆环,以创建具有非标准参数值的简单几何。该脚本将电势的数值结果与包含在导电圆柱表面内并与之同心的均匀体积电荷密度圆柱体(杆)的解析形式进行了比较。
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依