score = [] train_score = [] a = np.linspace(0.5, 2, 100) for C in a: x_train, x_test, y_train, y_test = train_test_split(result_x, y_0, test_size=0.3, random_state=0) # clf = SVC(C=C, kernel='rbf', gamma='auto', cache_size=5000).fit(x_train, y_train) score.append(clf.score(x_test, y_test)) train_score.append(clf.score(x_train, y_train)) print(a[score.index(max(score))])

时间: 2023-12-24 18:16:43 浏览: 27
这段代码使用了支持向量机(SVM)算法对数据进行分类,并通过网格搜索调整SVM算法中的超参数C的值,以使得算法在测试集上的分类准确率最高。具体来说,代码首先定义了一个等差数列a,用于存储不同的C值。然后,代码使用for循环遍历a中的每个C值,对每个C值都执行以下操作: 1. 使用train_test_split函数将数据集分为训练集和测试集,其中测试集占比为0.3。 2. 创建一个SVC实例clf,并使用fit函数对训练集进行训练。 3. 使用clf.score函数计算测试集和训练集上的分类准确率,并将其分别存储在score和train_score列表中。 在所有的C值上训练完成后,代码通过score.index(max(score))找到测试集上分类准确率最高的C值,然后将其输出。其中,max(score)表示测试集上最高的分类准确率,score.index(max(score))表示该分类准确率对应的C值在a中的索引。
相关问题

# 实现高斯核函数 def rbf_kernel(x1, x2): sigma=1.0 return np.exp(-np.linalg.norm(x1-x2,2)**2/sigma) # 加载葡萄酒识别数据集 wine = datasets.load_wine() # 处理数据和标签 X= wine["data"][:,(0,1)] y = 2 * (wine["target"]==1).astype(np.int64).reshape(-1,1) - 1 # 按照一定比例划分训练集和测试集(测试集占0.4) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=5) # 定义KernelSVM模型 # 训练模型 # 用Pyplot作图工具绘制模型预测边界 x0s = np.linspace(10, 15, 100) x1s = np.linspace(0, 7, 100) x0, x1 = np.meshgrid(x0s, x1s) W = np.c_[x0.ravel(), x1.ravel()] u= model.predict(W).reshape(x0.shape) plt.plot(X_train[:, 0][y_train[:,0]==1] , X_train[:, 1][y_train[:,0]==1], "gs") plt.plot(X_train[:, 0][y_train[:,0]==-1], X_train[:, 1][y_train[:,0]==-1], "ro") plt.contourf(x0, x1, u, alpha=0.2) plt.show() #计算指标 from sklearn.metrics import accuracy_score from sklearn.metrics import recall_score from sklearn.metrics import precision_score from sklearn.metrics import f1_score accuracy = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) print("accuracy = {}".format(accuracy)) print("precision = {}".format(precision)) print("recall = {}".format(recall)) print("f1 = {}".format(f1))补全代码

抱歉,上面的代码仍然不完整,缺少了定义KernelSVM模型和训练模型的部分。以下是完整的代码: ``` # 实现高斯核函数 def rbf_kernel(x1, x2): sigma=1.0 return np.exp(-np.linalg.norm(x1-x2,2)**2/sigma) # 加载葡萄酒识别数据集 wine = datasets.load_wine() # 处理数据和标签 X= wine["data"][:,(0,1)] y = 2 * (wine["target"]==1).astype(np.int64).reshape(-1,1) - 1 # 按照一定比例划分训练集和测试集(测试集占0.4) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=5) # 定义KernelSVM模型 svm_clf = Pipeline([ ("scaler", StandardScaler()), ("svm_clf", SVC(kernel="rbf", gamma=5, C=0.001)) ]) # 训练模型 svm_clf.fit(X_train, y_train.ravel()) # 用Pyplot作图工具绘制模型预测边界 x0s = np.linspace(10, 15, 100) x1s = np.linspace(0, 7, 100) x0, x1 = np.meshgrid(x0s, x1s) W = np.c_[x0.ravel(), x1.ravel()] u= svm_clf.predict(W).reshape(x0.shape) plt.plot(X_train[:, 0][y_train[:,0]==1] , X_train[:, 1][y_train[:,0]==1], "gs") plt.plot(X_train[:, 0][y_train[:,0]==-1], X_train[:, 1][y_train[:,0]==-1], "ro") plt.contourf(x0, x1, u, alpha=0.2) plt.show() # 计算指标 y_pred = svm_clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) print("accuracy = {}".format(accuracy)) print("precision = {}".format(precision)) print("recall = {}".format(recall)) print("f1 = {}".format(f1)) ``` 其中,`SVC`是Scikit-Learn库中的SVM模型,`Pipeline`是Scikit-Learn库中的管道模型,用于将多个数据预处理和模型组合成一个整体。

import numpy as np from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.model_selection import train_test_split np.random.seed(100) def genY(x): a0, a1, a2, a3, e = 0.01, -0.2, 0.3, -0.04, 0.05 yr = a0 + a1 * x + a2 * (x ** 2) + a3 * (x ** 3) + e y = yr + 0.03 * np.random.rand(1) return y def model_train(x, y): return score if __name__ == '__main__': # 利用np中的linspace生成线性数据 x = np.linspace(-1, 1, 200) # 用公式算出y y = [genY(a) for a in x] x = x.reshape(-1, 1) y = np.array(y).reshape(-1, 1) print(model_train(x, y))

这段代码是一个简单的机器学习模型的训练过程,使用的是线性回归模型和多项式特征。具体来说,该代码生成了一组200个在[-1,1]区间内均匀分布的自变量x,针对每个自变量x,使用预设的一组系数和噪声生成一个因变量y,最后将x和y分别转换成numpy数组,作为训练模型的输入。model_train函数则是训练模型的核心部分,但是它的具体实现还需要补充。在这个函数中,应该先将x进行多项式特征转换,然后使用线性回归模型对转换后的特征和y进行拟合,并返回模型的评分。最后,在主函数中,打印出模型评分的结果。

相关推荐

import pandas as pd import openpyxl # import matplotlib.pyplot as plt import numpy as np from sklearn.ensemble import AdaBoostClassifier from sklearn.model_selection import train_test_split # 打开Excel文件 wb = openpyxl.load_workbook('./处理过的训练集/987027.xlsx') # 选择需要读取的工作表 ws = wb['Sheet1'] # 读取第一列第二行之后的数据 data = [] for row in ws.iter_rows(min_row=2, min_col=1, values_only=True): data.append(row[0]) # 打印读取的数据 # print(data) # # 将浮点型数据按照等宽离散化的方法转化为离散型数据 # bin_edges = np.linspace(min(data), max(data), num=10) # discretized_data = np.digitize(data, bin_edges) # # 打印转化后的数据 # print(discretized_data) # 假设数据共有N个点,采样周期为0.25秒 N = len(data) t = np.arange(N) * 0.25 # labels2 = pd.cut(t, bins=10, labels=False) #组合时间序列和采样值 data1 = np.column_stack((t,data)) print(data1[:10]) # 打印前10行数据 # train_test_split函数用于将数据集划分为训练集和测试集,其中test_size参数指定了测试集所占的比例, # random_state参数指定了随机种子,以保证每次划分的结果相同。 X_train, X_test, y_train, y_test = train_test_split(data1[:, :-1], data1[:, -1], test_size=0.2, random_state=42) clf = AdaBoostClassifier(n_estimators=100, random_state=0) clf.fit(X_train, y_train) clf.predict([[0,0,0,0]]) clf.score(X_train, y_train)报错ValueError: X has 2 features, but AdaBoostClassifier is expecting 1 features as input.

# 拆分训练集 验证集 from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3) # 网格调优(预剪枝) 通过自动调优找到最优参数值 from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV parameters2={'max_depth':[15,17,20],'min_samples_leaf':[3,4,5],'min_samples_split':[7,9,10]} model2=DecisionTreeClassifier(random_state=42) grid_search=GridSearchCV(model2,parameters2,cv=5) grid_search.fit(x_train,y_train) i=grid_search.best_params_ print(i) # 4.模型训练与拟合 model = DecisionTreeClassifier(max_depth=15,min_samples_leaf=3,min_samples_split=10) model.fit(x_train, y_train) y_pred = model.predict(x_test) # 查看acc分数 from sklearn.metrics import accuracy_score score = accuracy_score(y_pred,y_test) print('Accuracy分数为:'+str(score)) from sklearn.metrics import precision_recall_fscore_support # 计算precision, recall, F1-score, support pre, rec, f1, sup = precision_recall_fscore_support(y_pred, y_test) print("precision:", pre, "\nrecall:", rec, "\nf1-score:", f1, "\nsupport:", sup) features=x.columns importances=model.feature_importances_ df=pd.DataFrame() df['特征名称']=features df['特征重要性']=importances f=df.sort_values('特征重要性',ascending=False) print(f) import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False import numpy as np sj = np.linspace(0.5, len(df['特征重要性']), len(df['特征重要性'])) plt.figure(figsize=(11, 8)) plt.bar(x=sj, height=df['特征重要性'], width=0.5, color='r') plt.xticks(rotation=340) xb = df['特征名称'] plt.xticks(sj, xb) plt.title('特征重要性柱图') plt.show() # 混淆矩阵 from sklearn import metrics metrics.plot_confusion_matrix(model, x_test, y_test) plt.show()

import numpy as np import matplotlib.pyplot as plt from sklearn import svm from sklearn.datasets import make_blobs from sklearn import model_selection from sklearn.metrics import f1_score def show_svm(a, b, bt): plt.figure(bt) plt.title('SVM with ' + bt) # 建立图像坐标 axis = plt.gca() plt.scatter(a[:, 0], a[:, 1], c=b, s=30) xlim = [a[:, 0].min(), a[:, 0].max()] ylim = [a[:, 1].min(), a[:, 1].max()] # 生成两个等差数列 xx = np.linspace(xlim[0], xlim[1], 50) yy = np.linspace(ylim[0], ylim[1], 50) X, Y = np.meshgrid(xx, yy) xy = np.vstack([X.ravel(), Y.ravel()]).T Z = clf.decision_function(xy).reshape(X.shape) # 画出分界线 axis.contour(X, Y, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']) axis.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=200, linewidths=1, facecolors='none') if __name__ == '__main__': # data = np.loadtxt('separable_data.txt', delimiter=',') # data = np.loadtxt('non_separable_data.txt', delimiter=',') # data = np.loadtxt('banknote.txt', delimiter=',') data = np.loadtxt('ionosphere.txt', delimiter=',') # data = np.loadtxt('wdbc.txt', delimiter=',') X = data[:, 0:-1] y = data[:, -1] """标签中有一类标签为1""" y = y + 1 ymin = min(y) if not (1 in set(y)): ll = max(list(set(y))) + 1 for i in range(len(y)): if y[i] == ymin: y[i] = 1 # 建立一个线性核(多项式核)的SVM clf = svm.SVC(kernel='linear') clf.fit(X, y) """显示所有数据用于训练后的可视化结果""" show_svm(X, y, 'all dataset') """divide the data into two sections: training and test datasets""" X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.1, random_state=42) """training""" clf = svm.SVC(kernel='linear')#线性内核 # clf = svm.SVC(kernel='poly')# 多项式内核 # clf = svm.SVC(kernel='sigmoid')# Sigmoid内核 clf.fit(X_train, y_train) # show_svm(X_train, y_train, 'training dataset') """predict""" pred = clf.predict(X_test) pred = np.array(pred) y_test = np.array(y_test) print(f'SVM 的预测结果 f1-score:{f1_score(y_test, pred)}') # plt.show()结果与分析

import seaborn as sns corrmat = df.corr() top_corr_features = corrmat.index plt.figure(figsize=(16,16)) #plot heat map g=sns.heatmap(df[top_corr_features].corr(),annot=True,cmap="RdYlGn") plt.show() sns.set_style('whitegrid') sns.countplot(x='target',data=df,palette='RdBu_r') plt.show() dataset = pd.get_dummies(df, columns = ['sex', 'cp', 'fbs','restecg', 'exang', 'slope', 'ca', 'thal']) from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler standardScaler = StandardScaler() columns_to_scale = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak'] dataset[columns_to_scale] = standardScaler.fit_transform(dataset[columns_to_scale]) dataset.head() y = dataset['target'] X = dataset.drop(['target'], axis=1) from sklearn.model_selection import cross_val_score knn_scores = [] for k in range(1, 21): knn_classifier = KNeighborsClassifier(n_neighbors=k) score = cross_val_score(knn_classifier, X, y, cv=10) knn_scores.append(score.mean()) plt.plot([k for k in range(1, 21)], knn_scores, color='red') for i in range(1, 21): plt.text(i, knn_scores[i - 1], (i, knn_scores[i - 1])) plt.xticks([i for i in range(1, 21)]) plt.xlabel('Number of Neighbors (K)') plt.ylabel('Scores') plt.title('K Neighbors Classifier scores for different K values') plt.show() knn_classifier = KNeighborsClassifier(n_neighbors = 12) score=cross_val_score(knn_classifier,X,y,cv=10) score.mean() from sklearn.ensemble import RandomForestClassifier randomforest_classifier= RandomForestClassifier(n_estimators=10) score=cross_val_score(randomforest_classifier,X,y,cv=10) score.mean()的roc曲线的代码

最新推荐

recommend-type

STC89C51 简单时钟

STC89C51 简单时钟,叫你从基础开始学习单片机,
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB归一化方法大比拼:5种方法,哪种最适合你的数据?

![MATLAB归一化方法大比拼:5种方法,哪种最适合你的数据?](https://www.finebi.com/wp-content/uploads/2019/11/FineBI%E8%A1%8C%E4%B8%9A%E9%A9%BE%E9%A9%B6%E8%88%B1-1024x510.png) # 1. MATLAB归一化概述 归一化是一种数据预处理技术,用于将数据缩放到特定范围内,从而消除不同特征之间的尺度差异。在MATLAB中,有各种归一化方法可用于不同类型的数据和应用程序。 归一化的主要目的是: - 提高模型的训练效率和准确性,通过消除特征之间的尺度差异,使模型能够更有效地学习
recommend-type

failed to register layer: ApplyLayer exit status 1 stdout: stderr: archive/tar: invalid tar header

很抱歉听到这个问题。这个错误通常是由于Docker镜像损坏或Docker存储库中缺少所需的图层引起的。您可以尝试以下几种方法来解决这个问题: 1. 清理Docker镜像和容器:使用命令“docker system prune”清理不再使用的Docker对象。 2. 检查Docker存储库:确保您正在使用可靠的Docker存储库,并检查是否存在所有必需的图层。 3. 重新下载Docker镜像:如果您确定问题是由于损坏的Docker镜像引起的,则可以尝试重新下载Docker镜像。 4. 更新Docker版本:如果您使用的是旧版Docker,则可能会出现此问题。尝试更新到最新版本的Docke
recommend-type

Linux系统常用操作命令大全手册

附件是Linux系统常用操作命令大全手册,是 markdown格式,其中覆盖了Linux系统管理、文件操作、网络配置等多个方面,都是日常工作中非常常用的命令,欢迎大家下载学习使用!
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB归一化实战指南:从零到一,轻松提升模型性能

![MATLAB归一化实战指南:从零到一,轻松提升模型性能](https://pic1.zhimg.com/80/v2-fd366800ef0bdf29c804ce25c0276778_1440w.webp) # 1. 归一化的理论基础** 归一化是一种数据预处理技术,旨在将数据缩放到特定范围内,通常是[0, 1]或[-1, 1]。通过归一化,可以消除数据量纲上的差异,使不同特征具有可比性,从而提高机器学习模型的性能。 归一化背后的基本原理是,在训练机器学习模型时,模型的学习过程会受到数据分布的影响。如果数据分布不均匀,某些特征可能具有较大的值域,而其他特征的值域较小。这会导致模型在训练过
recommend-type

File path = new File(ResourceUtils.getURL("classpath:static").getPath());

这段代码的作用是获取项目中静态资源文件夹的路径,其中`ResourceUtils.getURL("classpath:static")`表示获取`classpath`下的`static`文件夹的URL,`getPath()`方法则将URL转换成文件路径。最终得到的`File`对象可以用于读取或写入静态资源文件。需要注意的是,这段代码只适用于Spring Boot项目,因为它使用了Spring的`ResourceUtils`类。如果不是Spring Boot项目,可能需要使用其他方式获取静态资源文件夹的路径。
recommend-type

Java加密技术

加密解密,曾经是我一个毕业设计的重要组件。在工作了多年以后回想当时那个加密、 解密算法,实在是太单纯了。 言归正传,这里我们主要描述Java已经实现的一些加密解密算法,最后介绍数字证书。 如基本的单向加密算法: ● BASE64 严格地说,属于编码格式,而非加密算法 ● MD5(Message Digest algorithm 5,信息摘要算法) ● SHA(Secure Hash Algorithm,安全散列算法) ● HMAC(Hash Message AuthenticationCode,散列消息鉴别码) 复杂的对称加密(DES、PBE)、非对称加密算法: ● DES(Data Encryption Standard,数据加密算法) ● PBE(Password-based encryption,基于密码验证) ● RSA(算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman) ● DH(Diffie-Hellman算法,密钥一致协议) ● DSA(Digital Signature Algorithm,数字签名) ● ECC(Elliptic Curves Cryptography,椭圆曲线密码编码学) 本篇内容简要介绍 BASE64、MD5、SHA、HMAC 几种方法。 MD5、SHA、HMAC 这三种加密算法,可谓是非可逆加密,就是不可解密的加密方法。我 们通常只把他们作为加密的基础。单纯的以上三种的加密并不可靠。 BASE64 按照 RFC2045 的定义,Base64 被定义为:Base64 内容传送编码被设计用来把任意序列 的 8 位字节描述为一种不易被人直接识别的形式。(The Base64 Content-Transfer-Encoding is designed to represent arbitrary sequences of octets in a form that need not be humanly readable.) 常见于邮件、http 加密,截取 http 信息,你就会发现登录操作的用户名、密码字段通 过 BASE64 加密的。 通过 java 代码实现如下:
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩