在一个请求分页系统中,假如一个作业的页面走向是考虑下述页面走向:对于如下的页面访问序列: 1,2,3,4,2,1,2,4,3,2,4,1。当内存块数量为3时,试问:使用LRU置换算法产生的缺页次数为( )

时间: 2024-05-20 22:14:39 浏览: 20
使用LRU置换算法时,每次置换最近最久未使用的页面。以下是该页面访问序列的内存块状态: 1. 1 缺页 2. 1, 2 缺页 3. 1, 2, 3 缺页 4. 2, 3, 4 缺页 5. 2, 3, 4 命中 6. 1, 3, 4 缺页 7. 1, 2, 4 缺页 8. 2, 4, 3 缺页 9. 4, 3, 2 缺页 10. 3, 2, 4 缺页 11. 2, 4, 1 缺页 12. 4, 1, 2 缺页 因此,使用LRU置换算法产生的缺页次数为9次。
相关问题

在一个请求分页虚拟存储管理系统中,一个程序运行的页面走向是: 1、2、3、4、2、1

这个页面走向的页面访问序列是:1 2 3 4 2 1。 该虚拟存储管理系统的分页算法可以使用最近最少使用(LRU)算法,LRU算法会优先淘汰最近最少使用的页面,保留最近使用的页面。在这个页面走向的序列中,最近最少使用的页面是3和4,因为它们没有被频繁地访问。相反,页面1和2被频繁地访问,因此应该被保留在内存中。因此,如果该系统采用LRU算法,那么页面3和4将被淘汰,而页面1和2将被保留在内存中。

c语言编程实现请求分页存储管理页面Optimal、FIFO、LRU置换算法都在一个主函数中体现

好的,下面是实现请求分页存储管理页面Optimal、FIFO、LRU置换算法的C语言代码,它们都在一个主函数中体现: ```c #include <stdio.h> #define FRAME_NUM 3 // 物理块数 #define PAGE_NUM 12 // 页面数 // 定义页面结构体 struct Page { int id; // 页面号码 int counter; // 计数器 int flag; // 标记是否在内存中 }; // 初始化页面数组 void init_pages(struct Page pages[PAGE_NUM]) { for (int i = 0; i < PAGE_NUM; i++) { pages[i].id = i; pages[i].counter = 0; pages[i].flag = 0; } } // 打印页面数组 void print_pages(struct Page pages[PAGE_NUM]) { for (int i = 0; i < PAGE_NUM; i++) { printf("Page %d: ", pages[i].id); if (pages[i].flag == 1) { printf("in memory\n"); } else { printf("not in memory\n"); } } } // Optimal算法实现 int optimal(struct Page pages[PAGE_NUM], int memory[FRAME_NUM], int current) { int max = -1, index = -1; for (int i = 0; i < FRAME_NUM; i++) { int found = 0; for (int j = current; j < PAGE_NUM; j++) { if (memory[i] == pages[j].id) { found = 1; if (j > max) { max = j; index = i; } break; } } if (found == 0) { index = i; return index; } } return index; } // FIFO算法实现 int fifo(struct Page pages[PAGE_NUM], int memory[FRAME_NUM], int current) { static int index = 0; int temp = memory[index]; memory[index] = pages[current].id; index = (index + 1) % FRAME_NUM; return temp; } // LRU算法实现 int lru(struct Page pages[PAGE_NUM], int memory[FRAME_NUM], int current) { int min = 9999, index = -1; for (int i = 0; i < FRAME_NUM; i++) { if (pages[memory[i]].counter < min) { min = pages[memory[i]].counter; index = i; } } pages[memory[index]].counter = current; return index; } int main() { int requests[PAGE_NUM] = {0, 1, 2, 3, 2, 4, 5, 3, 4, 6, 5, 3}; // 请求序列 struct Page pages[PAGE_NUM]; // 页面数组 int memory[FRAME_NUM] = {-1, -1, -1}; // 内存数组 int page_faults = 0; // 缺页数 // 初始化页面数组 init_pages(pages); // 遍历请求序列 for (int i = 0; i < PAGE_NUM; i++) { int current = requests[i]; // 如果页面不在内存中 if (pages[current].flag == 0) { printf("Page %d is not in memory, page fault occurs\n", current); int index = optimal(pages, memory, i); //int index = fifo(pages, memory, i); //int index = lru(pages, memory, i); memory[index] = current; pages[current].flag = 1; page_faults++; } else { printf("Page %d is already in memory\n", current); } // 打印当前内存中的页面情况 print_pages(pages); printf("\n"); } printf("Total page faults: %d\n", page_faults); return 0; } ``` 在这个程序中,我们定义了一个 `Page` 结构体来表示页面,其中包括页面号码、计数器和标记是否在内存中。我们还定义了三个函数来实现 Optimal、FIFO 和 LRU 算法。在主函数中,我们首先定义了一个请求序列,然后初始化页面数组和内存数组。接着遍历请求序列,如果当前请求的页面不在内存中,我们就使用三种算法中的一种来选择替换页面,并将选中的页面放入内存中。如果当前请求的页面已经在内存中,我们就不需要进行任何操作。最后,我们打印出所有页面的状态以及缺页数。 请注意,在这个程序中,我们只是简单地使用了一个静态的请求序列和一个固定的物理块数。在实际应用中,请求序列和物理块数都是动态变化的,需要根据实际情况进行调整。

相关推荐

最新推荐

recommend-type

操作系统 linux 请求分页 模拟内存管理实验报告java(内含源码)

通过实现一个操作系统的内存管理的模拟系统,观察内存空闲分区管理、内存分配和回收过程,了解内存管理技术等特点,掌握内存管理中的分配、回收和置换算法,加深对请求调页系统的原理和实现过程的理解。
recommend-type

每天学一个 Linux 命令之more命令

Linux中的`more`命令是一个非常实用的工具,用于查看大文件的内容,特别是当屏幕空间有限,不希望一次性显示整个文件时。它与`cat`命令类似,但提供了更方便的交互式浏览方式。 1. **命令格式**: `more [-dlfpcsu...
recommend-type

vue页面跳转后返回原页面初始位置方法

vue页面跳转到新页面之后,再由新页面返回到原页面时候若想返回调出原页面的初始位置,怎么来解决这个问题呢?首先我们应该在跳出页面时候记录下跳出的scrollY,返回原页面的时候在设置返回位置为记录下的scrolly...
recommend-type

微信小程序左右滑动切换页面详解及实例代码

在微信小程序中,实现左右滑动切换页面是一个常见的交互需求,尤其在移动端应用中,这样的设计可以提供良好的用户体验。本文将详细讲解如何在微信小程序中实现这一功能,并提供实例代码。 首先,我们要了解微信小...
recommend-type

html+css购物网页设计.zip 点击右上角按钮可实现页面跳转,

html+css购物网页设计.zip 点击右上角按钮可实现页面跳转,及点击“今日推荐”里的图片可直接跳转到该官网,点击“…区”可呈现出相关按钮,style标签中时css部分,要求html与css分开显示可直接复制粘贴。
recommend-type

爬壁清洗机器人设计.doc

"爬壁清洗机器人设计" 爬壁清洗机器人是一种专为高层建筑外墙或屋顶清洁而设计的自动化设备。这种机器人能够有效地在垂直表面移动,完成高效且安全的清洗任务,减轻人工清洁的危险和劳动强度。在设计上,爬壁清洗机器人主要由两大部分构成:移动系统和吸附系统。 移动系统是机器人实现壁面自由移动的关键。它采用了十字框架结构,这种设计增加了机器人的稳定性,同时提高了其灵活性和避障能力。十字框架由两个呈十字型组合的无杆气缸构成,它们可以在X和Y两个相互垂直的方向上相互平移。这种设计使得机器人能够根据需要调整位置,适应不同的墙面条件。无杆气缸通过腿部支架与腿足结构相连,腿部结构包括拉杆气缸和真空吸盘,能够交替吸附在壁面上,实现机器人的前进、后退、转弯等动作。 吸附系统则由真空吸附结构组成,通常采用多组真空吸盘,以确保机器人在垂直壁面上的牢固吸附。文中提到的真空吸盘组以正三角形排列,这种方式提供了均匀的吸附力,增强了吸附稳定性。吸盘的开启和关闭由气动驱动,确保了吸附过程的快速响应和精确控制。 驱动方式是机器人移动的动力来源,由X方向和Y方向的双作用无杆气缸提供。这些气缸安置在中间的主体支架上,通过精确控制,实现机器人的精准移动。这种驱动方式既保证了力量,又确保了操作的精度。 控制系统作为爬壁清洗机器人的大脑,采用三菱公司的PLC-FX1N系列,负责管理机器人的各个功能,包括吸盘的脱离与吸附、主体的移动、清洗作业的执行等。PLC(可编程逻辑控制器)具有高可靠性,能根据预设程序自动执行指令,确保机器人的智能操作。 爬壁清洗机器人结合了机械结构、气动控制和智能电子技术,实现了在复杂环境下的自主清洁任务。其设计考虑了灵活性、稳定性和安全性,旨在提高高层建筑清洁工作的效率和安全性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python并发编程:从新手到专家的进阶之路(多线程与多进程篇)

![Python并发编程:从新手到专家的进阶之路(多线程与多进程篇)](https://img-blog.csdnimg.cn/12b70559909c4535891adbdf96805846.png) # 1. Python并发编程基础** 并发编程是一种编程范式,它允许程序同时执行多个任务。在Python中,可以通过多线程和多进程来实现并发编程。 多线程是指在单个进程中创建多个线程,每个线程可以独立执行任务。多进程是指创建多个进程,每个进程都有自己的内存空间和资源。 选择多线程还是多进程取决于具体应用场景。一般来说,多线程适用于任务之间交互较少的情况,而多进程适用于任务之间交互较多或
recommend-type

matlab小程序代码

MATLAB是一款强大的数值计算和可视化工具,特别适合进行科学计算、工程分析和数据可视化。编写MATLAB小程序通常涉及使用其内置的数据类型、函数库以及面向对象编程特性。以下是一个简单的MATLAB代码示例,用于计算两个数的和: ```matlab % MATLAB程序:计算两个数的和 function sum = addTwoNumbers(num1, num2) % 定义函数 sum = num1 + num2; % 返回结果 disp(['The sum of ' num2str(num1) ' and ' num2str(num2) ' is ' nu
recommend-type

喷涂机器人.doc

"该文档详细介绍了喷涂机器人的设计与研发,包括其背景、现状、总体结构、机构设计、轴和螺钉的校核,并涉及到传感器选择等关键环节。" 喷涂机器人是一种结合了人类智能和机器优势的机电一体化设备,特别在自动化水平高的国家,其应用广泛程度是衡量自动化水平的重要指标。它们能够提升产品质量、增加产量,同时在保障人员安全、改善工作环境、减轻劳动强度、提高劳动生产率和节省原材料等方面具有显著优势。 第一章绪论深入探讨了喷涂机器人的研究背景和意义。课题研究的重点在于分析国内外研究现状,指出国内主要集中在基础理论和技术的应用,而国外则在技术创新和高级功能实现上取得更多进展。文章明确了本文的研究内容,旨在通过设计高效的喷涂机器人来推动相关技术的发展。 第二章详细阐述了喷涂机器人的总体结构设计,包括驱动系统的选择(如驱动件和自由度的确定),以及喷漆机器人的运动参数。各关节的结构形式和平衡方式也被详细讨论,如小臂、大臂和腰部的传动机构。 第三章主要关注喷漆机器人的机构设计,建立了数学模型进行分析,并对腕部、小臂和大臂进行了具体设计。这部分涵盖了电机的选择、铰链四杆机构设计、液压缸设计等内容,确保机器人的灵活性和精度。 第四章聚焦于轴和螺钉的设计与校核,以确保机器人的结构稳定性。大轴和小轴的结构设计与强度校核,以及回转底盘与腰部主轴连接螺钉的校核,都是为了保证机器人在运行过程中的可靠性和耐用性。 此外,文献综述和外文文献分析提供了更广泛的理论支持,开题报告则展示了整个研究项目的目标和计划。 这份文档全面地展示了喷涂机器人的设计过程,从概念到实际结构,再到部件的强度验证,为读者提供了深入理解喷涂机器人技术的宝贵资料。