一个DataFrame中有四列数据,分别是车间号,样品类型,检验结果,备注,首先按照车间号进行分组,每组数据再按照样品类型进行分组,计算检验结果为合格的占比

时间: 2023-06-05 08:07:23 浏览: 91
可以回答这个问题,以下是代码实现: ```python import pandas as pd # 创建测试数据 data = {'车间号': [1, 1, 2, 2, 2], '样品类型': ['A', 'B', 'B', 'A', 'B'], '检验结果': ['不合格', '合格', '不合格', '合格', '合格'], '备注': ['-', '-', '-', '-', '-']} df = pd.DataFrame(data) # 按照车间号和样品类型进行分组,计算检验结果为合格的占比 result_df = df.groupby(['车间号', '样品类型'])['检验结果'].agg(['count', lambda x: (x == '合格').sum() / len(x)]) result_df = result_df.rename(columns={'<lambda>': '合格率'}).reset_index() ``` 运行上述代码后,得到的 `result_df` 就是按照要求计算出的数据。其中,第一列是车间号,第二列是样品类型,第三列是总样品数,第四列是样品合格率。
相关问题

python获取excel数据,分别是车间号,取样时间,样品类型,检验结果,备注,先按照车间号进行分组,每组数据再按照样品类型分组,计算每组数据检验结果为合格的占比,结果以百分比显示,再计算每组数据备注含有脱镀字符的占比,再计算每组数据备注含有破断低字符的占比,再计算每组数据备注含有颗粒多字符的占比,再计算每组数据备注含有颗粒少字符的占比,再计算每组数据备注含有团聚字符的占比,均以百分比显示,然后输出数据透视表,以车间号为行索引,显示每组数据的个数,合格数据的个数,最后显示总体的合格占比,脱镀占比,破断低占比,颗粒多占比,颗粒少占比,团聚占比,最后将数据透视表保存到excel表中

好的,这是一个数据处理的问题。首先,你需要安装 pandas 和 openpyxl 库,然后读取 excel 数据,对数据进行预处理。代码示例如下: ``` import pandas as pd # 读取 excel 数据 df = pd.read_excel('data.xlsx') # 按照车间号和样品类型分组,并计算合格率和备注占比 grouped = df.groupby(['车间号', '样品类型']).agg({ '检验结果': lambda x: sum(x == '合格') / len(x) * 100, '备注': lambda x: { '脱镀': sum('脱镀' in s for s in x) / len(x) * 100, '破断低': sum('破断低' in s for s in x) / len(x) * 100, '颗粒多': sum('颗粒多' in s for s in x) / len(x) * 100, '颗粒少': sum('颗粒少' in s for s in x) / len(x) * 100, '团聚': sum('团聚' in s for s in x) / len(x) * 100 } }) # 计算总体合格率和备注占比 overall = pd.DataFrame({ '合格率': grouped['检验结果'].mean(), '脱镀占比': grouped['备注'].apply(lambda x: sum(x['脱镀']) / grouped.shape[0] * 100), '破断低占比': grouped['备注'].apply(lambda x: sum(x['破断低']) / grouped.shape[0] * 100), '颗粒多占比': grouped['备注'].apply(lambda x: sum(x['颗粒多']) / grouped.shape[0] * 100), '颗粒少占比': grouped['备注'].apply(lambda x: sum(x['颗粒少']) / grouped.shape[0] * 100), '团聚占比': grouped['备注'].apply(lambda x: sum(x['团聚']) / grouped.shape[0] * 100) }) # 输出数据透视表 table = pd.pivot_table(df, index=['车间号'], values=['样品类型'], aggfunc='count', columns=['检验结果'], fill_value=0, margins=True) # 添加总体统计数据 table.loc['合格率'] = [grouped['检验结果'].mean() * grouped.shape[0], grouped.shape[0] - grouped['检验结果'].mean() * grouped.shape[0]] table.loc[['脱镀占比', '破断低占比', '颗粒多占比', '颗粒少占比', '团聚占比']] = [''] * table.shape[1] # 将数据透视表保存到 excel 表中 with pd.ExcelWriter('result.xlsx') as writer: table.to_excel(writer, index_label='车间号') overall.to_excel(writer, sheet_name='总体统计') grouped.to_excel(writer, sheet_name='分组统计') ``` 你可以将数据保存到 data.xlsx 文件中并运行上面的代码,然后会生成 result.xlsx 文件。其中,总体统计和分组统计是不同的 sheet,分别描述了总体数据和各组数据的统计结果。数据透视表展示了各个车间的样品数量和合格率。 注意:以上代码仅用于示例,实际应用中需要根据数据格式进行修改。

将一个dataframe中一列数据按年月分组

您好,我是ChitGPT,感谢您的提问。针对您的问题,我可以为您提供以下代码: ``` import pandas as pd # 创建一个DataFrame对象 df = pd.DataFrame({ 'date': ['2021-01', '2021-02', '2021-03', '2021-01', '2021-02'], 'value': [1, 2, 3, 4, 5] }) # 将日期列转换为datetime类型 df['date'] = pd.to_datetime(df['date']) # 按年月分组求和 grouped = df.groupby([df['date'].dt.year, df['date'].dt.month]).sum() # 输出结果 print(grouped) ``` 运行结果如下: ``` value date date 2021 1 5 2 7 3 3 ``` 解释一下代码: 首先创建了一个包含日期和数值的DataFrame对象。然后将日期列转换为datetime类型,方便进行日期的操作。接着使用`groupby`函数按年月分组,使用`sum`函数对分组后的数值列进行求和。最后输出分组后的结果。 希望这个答案能够解决您的问题。如果您还有其他问题,可以继续问我。
阅读全文

相关推荐

大家在看

recommend-type

先栅极还是后栅极 业界争论高K技术

随着晶体管尺寸的不断缩小,HKMG(high-k绝缘层+金属栅极)技术几乎已经成为45nm以下级别制程的必备技术.不过在制作HKMG结构晶体管的 工艺方面,业内却存在两大各自固执己见的不同阵营,分别是以IBM为代表的Gate-first(先栅极)工艺流派和以Intel为代表的Gate-last(后栅极)工艺流派,尽管两大阵营均自称只有自己的工艺才是最适合制作HKMG晶体管的技术,但一般来说使用Gate-first工艺实现HKMG结构的难点在于如何控制 PMOS管的Vt电压(门限电压);而Gate-last工艺的难点则在于工艺较复杂,芯片的管芯密度同等条件下要比Gate-first工艺低,需要设 计方积极配合修改电路设计才可以达到与Gate-first工艺相同的管芯密度级别。
recommend-type

应用手册 - SoftMove.pdf

ABB机器人的SoftMove手册,本手册是中文版,中文版,中文版,重要的事情说三遍,ABB原版手册是英文的,而这个手册是中文的。
recommend-type

LQR与PD控制在柔性机械臂中的对比研究

LQR与PD控制在柔性机械臂中的对比研究,路恩,杨雪锋,针对单杆柔性机械臂末端位置控制的问题,本文对柔性机械臂振动主动控制中较为常见的LQR和PD方法进行了控制效果的对比研究。首先,�
recommend-type

丹麦电力电价预测 预测未来24小时的电价 pytorch + lstm + 历史特征和价格 + 时间序列

pytorch + lstm + 历史特征和价格 + 时间序列
recommend-type

测量变频损耗L的方框图如图-所示。-微波电路实验讲义

测量变频损耗L的方框图如图1-1所示。 图1-1 实验线路 实验线路连接 本振源 信号源 功率计 定向耦合器 超高频毫伏表 滤波器 50Ω 混频器 毫安表

最新推荐

recommend-type

使用Python向DataFrame中指定位置添加一列或多列的方法

假设我们有一个DataFrame `feature`,可以通过以下方式向末尾添加一列: ```python import pandas as pd # 读取数据并设定列名 feature = pd.read_csv("file_path", delimiter="\t", header=None, usecols=[0, 1])...
recommend-type

python中dataframe将一列中的数值拆分成多个列

在Python的Pandas库中,DataFrame是一个非常重要的数据结构,用于处理二维表格型数据。在数据分析和机器学习任务中,经常需要对数据进行各种转换,包括将一列数值拆分成多个列。这个问题的描述中提到的场景是针对...
recommend-type

python中pandas.DataFrame对行与列求和及添加新行与列示例

在Python的pandas库中,DataFrame是一个非常重要的数据结构,用于处理二维表格数据。它提供了丰富的统计和操作功能,使得数据分析变得高效且直观。本文将详细介绍如何在DataFrame中对行与列进行求和以及如何添加新的...
recommend-type

在Python中Dataframe通过print输出多行时显示省略号的实例

在Python数据分析领域,DataFrame是pandas库中一个非常重要的数据结构,它被广泛用于处理和操作二维表格数据。当我们处理大型DataFrame时,由于屏幕显示限制,`print`函数默认只会展示一部分行,尤其是在行数较多时...
recommend-type

使用DataFrame删除行和列的实例讲解

在Python的Pandas库中,DataFrame是一个非常重要的数据结构,用于处理二维表格型数据。它类似于Excel表格或SQL中的表,提供了丰富的数据操作功能。在实际的数据分析工作中,我们经常需要根据需求删除DataFrame中的行...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"