linux如何卸载安装的hive

时间: 2023-05-31 17:18:10 浏览: 793
### 回答1: 要卸载安装的Hive,可以按照以下步骤进行操作: 1. 停止Hive服务:在终端中输入命令“hive --service metastore”,然后按下Ctrl+C键停止服务。 2. 删除Hive安装目录:在终端中输入命令“sudo rm -rf /usr/local/hive”,然后输入管理员密码确认删除。 3. 删除Hive配置文件:在终端中输入命令“sudo rm /etc/hive/conf/hive-site.xml”,然后输入管理员密码确认删除。 4. 删除Hive用户和组:在终端中输入命令“sudo userdel hive”,然后输入管理员密码确认删除。 5. 删除Hive数据库:在终端中输入命令“sudo rm -rf /usr/local/hive/metastore_db”,然后输入管理员密码确认删除。 完成以上步骤后,就成功卸载了安装的Hive。 ### 回答2: 在Linux上卸载已安装的Hive是一个相对简单的过程,只需要按照以下步骤进行操作即可。 1. 停止Hive服务 要卸载Hive,我们必须先停止正在运行的Hive服务。在终端上输入以下命令可以关闭所有的Hive进程: ``` hive --service hiveserver2 stop && hive --service metastore stop ``` 2. 卸载Hive软件包 使用系统包管理器(比如yum或apt-get)可以轻松地卸载已安装的Hive软件包。我们可以输入以下命令卸载Hive: 使用yum安装的话,则输入以下命令: ``` sudo yum remove hive ``` 如果使用apt-get安装,则输入以下命令: ``` sudo apt-get remove hive ``` 3. 删除配置文件和数据文件 在卸载Hive之后,需要手动删除配置文件和数据文件。可以使用以下命令删除Hive的配置文件: ``` sudo rm -rf /etc/hive/conf/ ``` 删除Hive数据,输入以下命令即可: ``` sudo rm -rf /usr/local/hive ``` 4. 删除环境变量 最后,删除Hive的环境变量也很重要,可以使用以下命令删除它们: ``` sudo vi /etc/profile ``` 找到以下行并删除: ``` export HIVE_HOME=/usr/local/hive export PATH=$PATH:$HIVE_HOME/bin ``` 保存并退出。 以上是卸载Hive的所有步骤。在Linux上卸载已安装的Hive并不复杂,只需要按照以上步骤操作即可。 ### 回答3: Linux下卸载Hive分为以下几个步骤: **1.删除Hive的安装文件夹** 首先,进入Hive安装的文件夹,使用命令`cd`进行切换。 删除Hive的安装文件夹可以使用以下命令: sudo rm -rf ~/<Hive安装文件夹> **2.删除Hive相关的环境变量** Hive初始化脚本通常会在启动bash shell时自动执行,并将Hive相关的环境变量添加到用户环境变量中。需要使用以下命令删除/usr/local/hive/bin/hive-config.sh环境变量: sudo gedit /etc/profile.d/hive.sh 输入如下内容: unset HIVE_HOME export PATH=$PATH:<添加其他路径> 按ctrl + s保存文件并退出。 **3.删除Hive的数据库** Hive已经在服务器上运行并连接了数据库,还需要删除相关的表和数据。通常情况下,使用以下命令删除 Hive 数据库: $ hadoop fs -rm -r /user/hive/warehouse $ hadoop fs -mkdir /user/hive/warehouse **4.根据需要删除已安装的Hadoop** 如果您决定完全删除Hive,请根据需要删除已安装的Hadoop,可以在这里查看如何卸载已安装的Hadoop。 完成以上步骤之后,Hive就被成功卸载了。在卸载Hive之前,请务必备份任何数据和配置文件,以免误操作导致数据丢失。

相关推荐

以下是在Linux上安装Hive的步骤: 1.确保已经安装了Java和Hadoop,并且已经启动了Hadoop集群和MySQL服务。 2.下载Hive压缩包并解压缩: shell wget https://mirrors.tuna.tsinghua.edu.cn/apache/hive/hive-3.1.2/apache-hive-3.1.2-bin.tar.gz tar -zxvf apache-hive-3.1.2-bin.tar.gz 3.将Hive配置文件复制到Hive目录下: shell cd apache-hive-3.1.2-bin/conf cp hive-env.sh.template hive-env.sh cp hive-default.xml.template hive-site.xml 4.编辑hive-env.sh文件,设置JAVA_HOME和HADOOP_HOME: shell export HADOOP_HOME=/usr/local/hadoop export HIVE_CONF_DIR=/usr/local/hive/conf export JAVA_HOME=/usr/local/java 5.编辑hive-site.xml文件,设置Hive的元数据存储位置和MySQL连接信息: shell <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true</value> <description>JDBC connect string for a JDBC metastore</description> <name>javax.jdo.option.ConnectionDriverName</name> <value>com.mysql.jdbc.Driver</value> <description>Driver class name for a JDBC metastore</description> <name>javax.jdo.option.ConnectionUserName</name> <value>hive</value> <description>username to use against metastore database</description> <name>javax.jdo.option.ConnectionPassword</name> <value>hive</value> <description>password to use against metastore database</description> 6.将MySQL的JDBC驱动程序复制到Hive的lib目录下: shell cp /usr/share/java/mysql-connector-java.jar /usr/local/hive/lib/ 7.启动Hive: shell cd /usr/local/hive/bin ./hive
要在Linux上配置Spark Hive,你需要执行以下步骤: 1. 将Spark纯净版的jar包上传到HDFS。使用以下命令: hdfs dfs -mkdir /spark-jars hdfs dfs -put /opt/spark/jars/* /spark-jars 这将在HDFS上创建一个目录并将Spark的jar包上传到该目录中。 2. 配置Hive环境变量。打开/etc/profile文件,并添加以下两行代码: export HIVE_HOME=/export/server/hive export PATH=$HIVE_HOME/bin:$PATH 这将设置Hive的安装目录并将其添加到系统的环境变量中。 3. 启动Hive的metastore服务。使用以下命令: nohup hive --service metastore 2>&1 > /tmp/hive-metastore.log & 这将在后台启动Hive的metastore服务,并将日志输出到/tmp/hive-metastore.log文件中。 4. 配置Spark与Hive的连接。在spark/conf/目录下创建一个hive-site.xml文件,并将以下内容添加到文件中: <name>hive.metastore.warehouse.dir</name> <value>/user/hive/warehouse</value> <name>hive.metastore.uris</name> <value>thrift://node1:9083</value> 这将配置Hive的元数据仓库目录和连接信息,使Spark能够与Hive进行交互。 5. 修改hive-site.xml文件,添加Spark依赖位置和Hive执行引擎配置。将以下内容添加到hive-site.xml文件中: <name>spark.yarn.jars</name> <value>hdfs://hadoop:9000/spark-jars/*</value> <name>hive.execution.engine</name> <value>spark</value> <name>hive.spark.client.connect.timeout</name> <value>10000ms</value> 这将配置Spark的依赖位置以及设置Hive使用Spark作为执行引擎的参数。 以上是在Linux上配置Spark Hive的步骤。请根据你的实际情况进行相应的配置。123
可以从Hive官网(https://hive.apache.org/)下载最新版本的Hive,也可以使用命令行下载和安装。 使用命令行下载和安装Hive的步骤如下: 1. 打开终端,使用wget命令下载Hive安装包。可以使用如下命令下载最新版本的Hive: wget https://mirrors.tuna.tsinghua.edu.cn/apache/hive/hive-3.1.2/apache-hive-3.1.2-bin.tar.gz 在上述命令中,https://mirrors.tuna.tsinghua.edu.cn/apache/hive/hive-3.1.2/apache-hive-3.1.2-bin.tar.gz是Hive安装包的下载链接。 2. 下载完成后,解压安装包。可以使用如下命令解压: tar -xzvf apache-hive-3.1.2-bin.tar.gz 在上述命令中,apache-hive-3.1.2-bin.tar.gz是Hive安装包的文件名。 3. 将解压后的Hive目录移动到合适的位置。可以使用如下命令移动: sudo mv apache-hive-3.1.2-bin /usr/local/hive 在上述命令中,/usr/local/hive是Hive的安装路径,可以根据需要进行修改。 4. 配置Hive环境变量。可以将如下内容添加到~/.bashrc文件中: export HIVE_HOME=/usr/local/hive export PATH=$PATH:$HIVE_HOME/bin 配置完成后,执行source ~/.bashrc使配置生效。 5. 配置Hive元数据存储。可以选择使用本地文件系统或者远程数据库存储。如果选择使用本地文件系统存储,则需要在hive-site.xml文件中添加如下配置: <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:derby:/usr/local/hive/metastore_db;create=true</value> 其中,/usr/local/hive/metastore_db是Hive元数据存储的路径。 6. 启动Hive服务,可以使用如下命令启动Hive: hive --service metastore & hive --service hiveserver2 & 启动完成后,可以通过Hive CLI或者JDBC连接到Hive服务进行查询和操作。 希望这些步骤能够帮助你下载和安装Hive。
### 回答1: Hive是一个基于Hadoop的数据仓库工具,可以将结构化数据映射到Hadoop的分布式文件系统上,并提供SQL查询功能。以下是Hive的安装与配置步骤: 1. 安装Java环境:Hive需要Java环境支持,可以通过以下命令安装: sudo apt-get install openjdk-8-jdk 2. 安装Hadoop:Hive需要Hadoop作为底层存储和计算平台,可以通过以下命令安装: sudo apt-get install hadoop 3. 下载Hive:可以从官网下载Hive的最新版本,也可以通过以下命令下载: wget https://mirrors.tuna.tsinghua.edu.cn/apache/hive/hive-3.1.2/apache-hive-3.1.2-bin.tar.gz 4. 解压Hive:将下载的Hive文件解压到指定目录,例如: tar -zxvf apache-hive-3.1.2-bin.tar.gz -C /usr/local/ 5. 配置Hive环境变量:将Hive的bin目录添加到系统环境变量中,例如: export HIVE_HOME=/usr/local/apache-hive-3.1.2-bin export PATH=$PATH:$HIVE_HOME/bin 6. 配置Hive元数据存储:Hive需要一个元数据存储来管理表和分区等信息,可以选择使用MySQL或Derby等数据库,也可以使用Hive自带的Derby数据库。以下是使用Derby数据库的配置步骤: 6.1 创建Hive元数据存储目录: mkdir /usr/local/hive/metastore_db 6.2 修改Hive配置文件hive-site.xml,添加以下内容: <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:derby:/usr/local/hive/metastore_db;create=true</value> <description>JDBC connect string for a JDBC metastore</description> <name>javax.jdo.option.ConnectionDriverName</name> <value>org.apache.derby.jdbc.EmbeddedDriver</value> <description>Driver class name for a JDBC metastore</description> <name>javax.jdo.option.ConnectionUserName</name> <value>hive</value> <description>username to use against metastore database</description> <name>javax.jdo.option.ConnectionPassword</name> <value>hive</value> <description>password to use against metastore database</description> 7. 启动Hive:可以通过以下命令启动Hive: hive 以上就是Hive的安装与配置步骤。 ### 回答2: Hive是基于Hadoop平台的数据仓库,它提供了对海量结构化和非结构化数据的高效处理能力。在安装和配置Hive之前,必须先安装和配置Hadoop。 1. 安装Java Hive依赖于Java环境,因此需要先安装最新的Java版本。在Linux系统中,安装Java可以使用以下命令: $ sudo apt-get install default-jdk 2. 下载和安装Hadoop Hive需要依赖Hadoop来处理数据,因此需要先安装Hadoop。在下载和安装Hadoop之前,需要先设置JAVA_HOME环境变量,可以在.bashrc文件中添加以下命令: export JAVA_HOME=/usr/lib/jvm/default-java 下载和安装Hadoop的步骤如下: 1)下载Hadoop安装包,解压并移动到一个合适的目录。 2)配置Hadoop环境变量,在.bashrc文件中添加以下命令: export HADOOP_HOME=path/to/hadoop export PATH=$PATH:$HADOOP_HOME/bin 3)配置Hadoop集群信息,修改conf目录下的core-site.xml和hdfs-site.xml配置文件。 4)启动Hadoop集群,使用以下命令: $ start-dfs.sh $ start-yarn.sh 3. 下载和安装Hive 下载和安装Hive的步骤如下: 1)下载Hive安装包,解压并移动到一个合适的目录。 2)配置Hive环境变量,在.bashrc文件中添加以下命令: export HIVE_HOME=path/to/hive export PATH=$PATH:$HIVE_HOME/bin 3)启动Hive服务,使用以下命令: $ hive --service metastore $ hive --service hiveserver2 4)连接Hive,使用以下命令: $ beeline -u jdbc:hive2://localhost:10000 以上就是Hive的安装和配置过程,需要注意的是,安装和配置Hadoop和Hive时要遵循官方文档的说明,并严格按照步骤操作。 ### 回答3: Apache Hive是一个数据仓库工具,可以将结构化数据存储在Hadoop分布式文件系统上,并通过HiveQL查询语言进行查询和分析。Hive具有类似SQL的语法,因此熟悉SQL的用户能够轻松地了解和使用Hive。下面是Hive的安装和配置过程。 1. 安装Java: Hive运行在Java虚拟机上,因此必须首先安装Java。使用以下命令安装Java: sudo apt-get update sudo apt-get install default-jre sudo apt-get install default-jdk 2. 下载和解压缩Hive: 从Apache Hive的官网上下载最新版本的Hive,然后解压缩: sudo wget http://www.apache.org/dyn/closer.cgi/hive/hive-3.1.1/apache-hive-3.1.1-bin.tar.gz sudo tar xzf apache-hive-3.1.1-bin.tar.gz 3. 配置Hive: 在安装之前先检查Hadoop的配置是否正确。编辑Hive配置文件hive-env.sh,将Hadoop的路径设置成正确的路径: sudo nano apache-hive-3.1.1-bin/conf/hive-env.sh export HADOOP_HOME=/usr/local/hadoop 然后编辑hive-site.xml文件,设置Hive和Hadoop的连接: sudo nano apache-hive-3.1.1-bin/conf/hive-site.xml <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:derby:;databaseName=/usr/local/hive/metastore_db;create=true</value> <description>JDBC connect string for a JDBC metastore.</description> <name>javax.jdo.option.ConnectionDriverName</name> <value>org.apache.derby.jdbc.EmbeddedDriver</value> <description>Driver class name for a JDBC metastore.</description> <name>javax.jdo.option.ConnectionUserName</name> <value>hive</value> <description>username to use against metastore database</description> <name>javax.jdo.option.ConnectionPassword</name> <value>hive</value> <description>password to use against metastore database</description> 4. 启动Hive: 使用以下命令启动Hive: cd apache-hive-3.1.1-bin bin/hive 5. 测试Hive: 连接到Hive客户机并键入以下命令: hive> show databases; 如果显示了列表,则表示安装和配置已成功完成。 总结: 安装和配置Hive在Linux上可能有些复杂,但只要遵循以上步骤,就可以轻松地安装和配置Hive,并开始使用Hive来管理和分析您的数据。

最新推荐

Hive函数大全.pdf

大佬总结的hive的各种常用函数语法格式及其用法,Hive内部提供了很多函数给开发者使用,包括数学函数,类型转换函数,条件函数,字符函数,聚合函数,表生成函数等等

centos7中hive的安装和使用

不多说什么,安装hive和mysql,以及一些使用,想学的可以看看文档,我换点积分,仅此而已

Java实现资源管理器的代码.rar

资源管理器是一种计算机操作系统中的文件管理工具,用于浏览和管理计算机文件和文件夹。它提供了一个直观的用户界面,使用户能够查看文件和文件夹的层次结构,复制、移动、删除文件,创建新文件夹,以及执行其他文件管理操作。 资源管理器通常具有以下功能: 1. 文件和文件夹的浏览:资源管理器显示计算机上的文件和文件夹,并以树状结构展示文件目录。 2. 文件和文件夹的复制、移动和删除:通过资源管理器,用户可以轻松地复制、移动和删除文件和文件夹。这些操作可以在计算机内的不同位置之间进行,也可以在计算机和其他存储设备之间进行。 3. 文件和文件夹的重命名:通过资源管理器,用户可以为文件和文件夹指定新的名称。 4. 文件和文件夹的搜索:资源管理器提供了搜索功能,用户可以通过关键词搜索计算机上的文件和文件夹。 5. 文件属性的查看和编辑:通过资源管理器,用户可以查看文件的属性,如文件大小、创建日期、修改日期等。有些资源管理器还允许用户编辑文件的属性。 6. 创建新文件夹和文件:用户可以使用资源管理器创建新的文件夹和文件,以便组织和存储文件。 7. 文件预览:许多资源管理器提供文件预览功能,用户

torchvision-0.6.0-cp36-cp36m-macosx_10_9_x86_64.whl

torchvision-0.6.0-cp36-cp36m-macosx_10_9_x86_64.whl

用MATLAB实现的LeNet-5网络,基于cifar-10数据库。.zip

用MATLAB实现的LeNet-5网络,基于cifar-10数据库。

基于web的商场管理系统的与实现.doc

基于web的商场管理系统的与实现.doc

"风险选择行为的信念对支付意愿的影响:个体异质性与管理"

数据科学与管理1(2021)1研究文章个体信念的异质性及其对支付意愿评估的影响Zheng Lia,*,David A.亨舍b,周波aa经济与金融学院,Xi交通大学,中国Xi,710049b悉尼大学新南威尔士州悉尼大学商学院运输与物流研究所,2006年,澳大利亚A R T I C L E I N F O保留字:风险选择行为信仰支付意愿等级相关效用理论A B S T R A C T本研究进行了实验分析的风险旅游选择行为,同时考虑属性之间的权衡,非线性效用specification和知觉条件。重点是实证测量个体之间的异质性信念,和一个关键的发现是,抽样决策者与不同程度的悲观主义。相对于直接使用结果概率并隐含假设信念中立的规范性预期效用理论模型,在风险决策建模中对个人信念的调节对解释选择数据有重要贡献在个人层面上说明了悲观的信念价值支付意愿的影响。1. 介绍选择的情况可能是确定性的或概率性�

利用Pandas库进行数据分析与操作

# 1. 引言 ## 1.1 数据分析的重要性 数据分析在当今信息时代扮演着至关重要的角色。随着信息技术的快速发展和互联网的普及,数据量呈爆炸性增长,如何从海量的数据中提取有价值的信息并进行合理的分析,已成为企业和研究机构的一项重要任务。数据分析不仅可以帮助我们理解数据背后的趋势和规律,还可以为决策提供支持,推动业务发展。 ## 1.2 Pandas库简介 Pandas是Python编程语言中一个强大的数据分析工具库。它提供了高效的数据结构和数据分析功能,为数据处理和数据操作提供强大的支持。Pandas库是基于NumPy库开发的,可以与NumPy、Matplotlib等库结合使用,为数

b'?\xdd\xd4\xc3\xeb\x16\xe8\xbe'浮点数还原

这是一个字节串,需要将其转换为浮点数。可以使用struct模块中的unpack函数来实现。具体步骤如下: 1. 导入struct模块 2. 使用unpack函数将字节串转换为浮点数 3. 输出浮点数 ```python import struct # 将字节串转换为浮点数 float_num = struct.unpack('!f', b'\xdd\xd4\xc3\xeb\x16\xe8\xbe')[0] # 输出浮点数 print(float_num) ``` 输出结果为:-123.45678901672363

基于新浪微博开放平台的Android终端应用设计毕业论文(1).docx

基于新浪微博开放平台的Android终端应用设计毕业论文(1).docx