#include<stdio.h>#include<stdlib.h>#include<math.h>void main(){ int i; int n; for(i=100;i<=200;i++) { if(i%3==0&&i%7==0) { if(n%8==0)printf("\n"); printf("%6d",i); n++; } } printf("\nNumbers are:%d\n",n);}修改

时间: 2023-12-02 12:02:08 浏览: 43
修改后的代码如下: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> int main() { int i, n = 0; for (i = 100; i <= 200; i++) { if (i % 3 == 0 && i % 7 == 0) { if (n % 8 == 0) { printf("\n"); } printf("%6d", i); n++; } } printf("\nNumbers are: %d\n", n); return 0; } ``` 修改的内容包括: 1. `void main()` 改为 `int main()`,因为 `main` 函数应该有一个返回值。 2. 在 printf 函数中添加空格,使输出更加美观。 3. 在程序结尾添加 `return 0;`,表示程序正常结束。
相关问题

用c语言帮我写一份代码,要求能够进行位图的自定义比例缩放、自定义角度旋转,前提是使用windows.h#include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <math.h>库,不能使用opencv库

当使用C语言进行位图的自定义比例缩放和自定义角度旋转时,可以按照以下步骤进行: 1. 读取位图文件:使用`windows.h`库中的函数来读取位图文件,并获取位图的宽度、高度和像素数据。 2. 自定义比例缩放:根据用户输入的比例因子,计算出缩放后的目标宽度和高度。然后,根据缩放后的目标宽度和高度,对原始位图的像素数据进行插值计算,生成缩放后的位图像素数据。 3. 自定义角度旋转:根据用户输入的旋转角度,计算出旋转后的目标宽度和高度。然后,根据旋转后的目标宽度和高度,对缩放后的位图进行旋转操作,生成旋转后的位图像素数据。 4. 保存位图文件:使用`windows.h`库中的函数将旋转后的位图像素数据保存为新的位图文件。 下面是一个示例代码,演示了如何使用C语言进行位图的自定义比例缩放和自定义角度旋转: ```c #include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <math.h> #include <windows.h> // 位图文件头结构体 typedef struct { uint16_t bfType; // 文件类型,必须为0x4D42 uint32_t bfSize; // 文件大小 uint16_t bfReserved1; // 保留,必须为0 uint16_t bfReserved2; // 保留,必须为0 uint32_t bfOffBits; // 位图数据的起始位置 } BMPFileHeader; // 位图信息头结构体 typedef struct { uint32_t biSize; // 信息头大小,必须为40 int32_t biWidth; // 图像宽度 int32_t biHeight; // 图像高度 uint16_t biPlanes; // 位平面数,必须为1 uint16_t biBitCount; // 每个像素的位数 uint32_t biCompression; // 压缩类型,0表示不压缩 uint32_t biSizeImage; // 图像大小,字节为单位 int32_t biXPelsPerMeter;// 水平分辨率,像素每米 int32_t biYPelsPerMeter;// 垂直分辨率,像素每米 uint32_t biClrUsed; // 使用的颜色数,如果为0,则使用所有调色板项 uint32_t biClrImportant;// 重要的颜色数,如果为0,则所有颜色都重要 } BMPInfoHeader; // 自定义比例缩放函数 void scaleBitmap(uint8_t* srcData, int srcWidth, int srcHeight, uint8_t* dstData, int dstWidth, int dstHeight) { float scaleX = (float)srcWidth / dstWidth; float scaleY = (float)srcHeight / dstHeight; for (int y = 0; y < dstHeight; y++) { for (int x = 0; x < dstWidth; x++) { int srcX = (int)(x * scaleX); int srcY = (int)(y * scaleY); dstData[y * dstWidth + x] = srcData[srcY * srcWidth + srcX]; } } } // 自定义角度旋转函数 void rotateBitmap(uint8_t* srcData, int srcWidth, int srcHeight, uint8_t* dstData, int dstWidth, int dstHeight, float angle) { float centerX = (float)srcWidth / 2; float centerY = (float)srcHeight / 2; float radian = angle * M_PI / 180.0; for (int y = 0; y < dstHeight; y++) { for (int x = 0; x < dstWidth; x++) { float srcX = (x - centerX) * cos(radian) - (y - centerY) * sin(radian) + centerX; float srcY = (x - centerY) * cos(radian) + centerY; if (srcX >= 0 && srcX < srcWidth && srcY >= 0 && srcY < srcHeight) { int p1x = (int)srcX; int p1y = (int)srcY; int p2x = p1x + 1; int p2y = p1y + 1; uint8_t p1 = srcData[p1y * srcWidth + p1x]; uint8_t p2 = srcData[p1y * srcWidth + p2x]; uint8_t p3 = srcData[p2y * srcWidth + p1x]; uint8_t p4 = srcData[p2y * srcWidth + p2x]; float dx = srcX - p1x; float dy = srcY - p1y; dstData[y * dstWidth + x] = (uint8_t)((1 - dx) * (1 - dy) * p1 + dx * (1 - dy) * p2 + (1 - dx) * dy * p3 + dx * dy * p4); } } } } int main() { // 读取位图文件 FILE* file = fopen("input.bmp", "rb"); if (file == NULL) { printf("Failed to open input.bmp\n"); return 0; } BMPFileHeader fileHeader; BMPInfoHeader infoHeader; fread(&fileHeader, sizeof(BMPFileHeader), 1, file); fread(&infoHeader, sizeof(BMPInfoHeader), 1, file); int width = infoHeader.biWidth; int height = infoHeader.biHeight; int dataSize = width * height; uint8_t* srcData = (uint8_t*)malloc(dataSize); uint8_t* dstData = (uint8_t*)malloc(dataSize); fread(srcData, dataSize, 1, file); fclose(file); // 自定义比例缩放 int scaleWidth = width / 2; int scaleHeight = height / 2; scaleBitmap(srcData, width, height, dstData, scaleWidth, scaleHeight); // 自定义角度旋转 int rotateWidth = scaleWidth; int rotateHeight = scaleHeight; float angle = 45.0; rotateBitmap(dstData, scaleWidth, scaleHeight, dstData, rotateWidth, rotateHeight, angle); // 保存位图文件 file = fopen("output.bmp", "wb"); if (file == NULL) { printf("Failed to create output.bmp\n"); return 0; } fwrite(&fileHeader, sizeof(BMPFileHeader), 1, file); fwrite(&infoHeader, sizeof(BMPInfoHeader), 1, file); fwrite(dstData, dataSize, 1, file); fclose(file); free(srcData); free(dstData); printf("Bitmap scaling and rotation completed!\n"); return 0; } ``` 请注意,上述代码仅为示例,可能需要根据实际情况进行适当修改和优化。另外,该代码仅支持处理24位色深的位图文件。如果需要处理其他色深的位图文件,可能需要进行相应的修改。

#include <stdio.h> #include <stdlib.h> #include <math.h> #include <c6x.h> #define N 1024 // 信号长度 #define B_LEN 32 // FIR滤波器系数长度 #define A_LEN 8 // IIR滤波器系数长度 int main(void) { // 初始化原始信号 float x[N]; for (int i = 0; i < N; i++) { x[i] = sin(2 * M_PI * i / 128) + 0.5 * sin(2 * M_PI * i / 16); }这段程序有错五

该程序存在以下问题: 1. 缺少头文件,应该添加 `#include <dsp.h>` 头文件。 2. `B_LEN` 和 `A_LEN` 定义不合理,应该分别定义为 33 和 9,因为 FIR 滤波器系数长度为 M+1,IIR 滤波器系数长度为 N+1。 3. 缺少滤波器系数定义,需要定义 FIR 和 IIR 滤波器系数。 4. 缺少变量定义,需要定义输入输出变量和滤波器状态变量。 5. 缺少滤波器函数调用,需要调用 `DSP_fir_r8()` 和 `DSP_iir_df1_r8()` 函数进行滤波。 下面是修改后的程序: ``` #include <stdio.h> #include <stdlib.h> #include <math.h> #include <dsp.h> #define N 1024 #define B_LEN 33 #define A_LEN 9 float b[B_LEN] = {0.015625, 0, -0.109375, 0, 0.390625, 0.5, 0.390625, 0, -0.109375, 0, 0.015625}; float a[A_LEN] = {1, -3.180388, 4.452956, -3.647007, 1.767914, -0.504274, 0.067874, -0.003273, 0.000054}; float x[N], y_fir[N], y_iir[N]; int iir_state[A_LEN], fir_state[B_LEN]; int main(void) { // 初始化原始信号 for (int i = 0; i < N; i++) { x[i] = sin(2 * M_PI * i / 128) + 0.5 * sin(2 * M_PI * i / 16); } // FIR滤波器 DSP_zero_fill((void *)fir_state, sizeof(fir_state)); // 清空状态变量 DSP_fir_r8(x, b, y_fir, N, B_LEN, fir_state); // 进行FIR滤波 // IIR滤波器 DSP_zero_fill((void *)iir_state, sizeof(iir_state)); // 清空状态变量 DSP_iir_df1_r8(x, a, y_iir, N, A_LEN, iir_state); // 进行IIR滤波 return 0; } ```

相关推荐

#include <stdio.h> #include <stdlib.h> #include <windows.h> #include <math.h> #include <time.h> #define PI 3.1415926536 #define HIGH 40 // 定义界面高度 #define WIDE 80 // 定义界面宽度 void drawCircle(int radius, int x, int y); int main() { // 初始化随机数种子 srand((unsigned)time(NULL)); // 输出提示信息 printf("按下空格键停止程序,任意键继续。\n"); // 初始化圆的半径、圆心坐标 int radius = rand()%10 + 10; int x = rand()%70 + 5; int y = rand()%30 + 5; // 不断绘制圆,直到用户按下空格键 while (1) { // 绘制圆 drawCircle(radius, x, y); // 等待一段时间 Sleep(500); // 生成新的圆的半径和坐标 int newRadius = rand()%10 + 10; int newX = rand()%70 + 5; int newY = rand()%30 + 5; // 判断新生成的圆是否与已有圆重叠或越界 int isOverlap = 0; if (newX-newRadius < 0 || newX+newRadius > WIDE || newY-newRadius < 0 || newY+newRadius > HIGH) { isOverlap = 1; } double distance = sqrt(pow((newX-x), 2) + pow((newY-y), 2)); if (distance <= radius+newRadius) { isOverlap = 1; } // 如果没有重叠或越界的情况,更新圆的半径和坐标 if (!isOverlap) { radius = newRadius; x = newX; y = newY; } // 如果用户按下了空格键,跳出循环 if (GetKeyState(VK_SPACE) & 0x8000) { printf("程序已结束。按任意键退出。\n"); break; } } // 暂停程序,等待用户输入任意键结束程序 system("pause"); return 0; } // 绘制圆函数 void drawCircle(int radius, int x, int y) { system("cls"); int i, j; for (i = 0; i <= HIGH; i++) { for (j = 0; j <= WIDE; j++) { double distance = sqrt(pow(i - y, 2) + pow(j - x, 2)); if (fabs(distance - radius) < 0.5) { // 判断是否在圆上 printf("*"); Sleep(5); // 适当延时,以免输出速度过快 } else { printf(" "); } } printf("\n"); } } 把结果的圆改成正圆

最新推荐

recommend-type

STM32H562实现FreeRTOS内存管理【支持STM32H系列单片机】.zip

STM32H562 FreeRTOS驱动程序,支持STM32H系列单片机。 项目代码可直接运行~
recommend-type

恶魔轮盘.cpp

恶魔轮盘
recommend-type

基于C++&amp;OPENCV 的全景图像拼接.zip

基于C++&amp;OPENCV 的全景图像拼接 C++是一种广泛使用的编程语言,它是由Bjarne Stroustrup于1979年在新泽西州美利山贝尔实验室开始设计开发的。C++是C语言的扩展,旨在提供更强大的编程能力,包括面向对象编程和泛型编程的支持。C++支持数据封装、继承和多态等面向对象编程的特性和泛型编程的模板,以及丰富的标准库,提供了大量的数据结构和算法,极大地提高了开发效率。12 C++是一种静态类型的、编译式的、通用的、大小写敏感的编程语言,它综合了高级语言和低级语言的特点。C++的语法与C语言非常相似,但增加了许多面向对象编程的特性,如类、对象、封装、继承和多态等。这使得C++既保持了C语言的低级特性,如直接访问硬件的能力,又提供了高级语言的特性,如数据封装和代码重用。13 C++的应用领域非常广泛,包括但不限于教育、系统开发、游戏开发、嵌入式系统、工业和商业应用、科研和高性能计算等领域。在教育领域,C++因其结构化和面向对象的特性,常被选为计算机科学和工程专业的入门编程语言。在系统开发领域,C++因其高效性和灵活性,经常被作为开发语言。游戏开发领域中,C++由于其高效性和广泛应用,在开发高性能游戏和游戏引擎中扮演着重要角色。在嵌入式系统领域,C++的高效和灵活性使其成为理想选择。此外,C++还广泛应用于桌面应用、Web浏览器、操作系统、编译器、媒体应用程序、数据库引擎、医疗工程和机器人等领域。16 学习C++的关键是理解其核心概念和编程风格,而不是过于深入技术细节。C++支持多种编程风格,每种风格都能有效地保证运行时间效率和空间效率。因此,无论是初学者还是经验丰富的程序员,都可以通过C++来设计和实现新系统或维护旧系统。3
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码是用于生成 a 和 b 之间的随机数。首先,它使用 rand() 函数生成一个 [0,1) 之间的随机小数,然后将这个小数乘以 a、b 范围内的差值,再加上 a 和 b 中的较小值。这可以确保生成的随机数大于等于 a,小于等于 b,而且不会因为 a 和 b 之间的差距过大而导致难以生成足够多的随机数。最后,使用 fabs() 函数来确保计算结果是正数。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、