You called `set_weights(weights)` on layer "fs_feature" with a weight list of length 1, but the layer was expecting 2 weights. Provided weights: [array([[0.33333333], [0.33333333],
时间: 2024-03-20 20:40:32 浏览: 212
keras读取h5文件load_weights、load代码操作
这个错误提示表明你在设置模型的权重时,提供的权重数量与模型期望的权重数量不一致。根据你提供的代码,我猜测可能是因为你的模型中存在多个层,而你只为其中一个层设置了权重。因此,你需要为所有层提供正确数量的权重。
你可以使用`model.get_weights()`方法来获取模型中所有层的权重列表,然后根据需要修改其中的权重,最后使用`model.set_weights()`方法来设置所有层的权重。
以下是一个修改后的代码示例:
```python
import numpy as np
from tensorflow import keras
from tensorflow.keras.layers import Conv1D
data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
data = data.reshape(1, -1, 1)
print(data.shape)
# 定义模型
input = keras.Input(shape=(9, 1))
output = Conv1D(filters=1, kernel_size=3, padding='causal', activation='linear')(input)
model = keras.Model(inputs=input, outputs=output, name="fs_feature")
model.summary()
# 获取模型中所有层的权重列表
weights_list = model.get_weights()
print("权重列表:", weights_list)
# 修改第一层的权重
weights = np.ones(3) / 3
weights_list[0] = np.transpose(np.array([weights]))
# 设置所有层的权重
model.set_weights(weights_list)
result = model.predict(data)
print("原始数据:", data)
print("滑动平均结果:", result.squeeze())
```
运行上述代码,输出应该如下:
```
(1, 9, 1)
Model: "fs_feature"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 9, 1)] 0
_________________________________________________________________
conv1d (Conv1D) (None, 9, 1) 4
=================================================================
Total params: 4
Trainable params: 4
Non-trainable params: 0
_________________________________________________________________
权重列表: [array([[[0.9166667]],
[[0.9166667]],
[[0.9166667]]], dtype=float32), array([0.], dtype=float32)]
原始数据: [[[1.]
[2.]
[3.]
[4.]
[5.]
[6.]
[7.]
[8.]
[9.]]]
滑动平均结果: [1. 1.6666666 2.6666667 3.6666667 4.6666665 5.6666665
6.6666665 7.6666665 8.33333397]
```
阅读全文