DataLoader(train_data, batch_size=args['batch_size'], num_workers=4, shuffle=True)
时间: 2024-06-06 13:11:48 浏览: 152
This line of code initializes a DataLoader object to load and process training data in batches.
The DataLoader takes in the following arguments:
- `train_data`: This is the training data that will be loaded and processed in batches. It is typically a PyTorch dataset object.
- `batch_size`: This specifies the number of samples in each batch.
- `num_workers`: This specifies the number of worker processes to use for data loading. Using multiple workers can speed up the data loading process.
- `shuffle`: This specifies whether to shuffle the data before loading it. Shuffling the data can help prevent the model from overfitting to the order of the training data.
相关问题
train_dataloader = data.DataLoader( train_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True, drop_last=True ) valid_dataloader = data.DataLoader( valid_dataset, batch_size=args.n_samples, num_workers=args.num_workers, shuffle=False, drop_last=False ) print('Training images:', len(train_dataset), '/', 'Validating images:', len(valid_dataset))
这段代码创建了训练集和验证集的数据加载器,并打印了训练集和验证集的图像数量。
首先,使用 `data.DataLoader()` 函数创建了一个名为 `train_dataloader` 的训练集数据加载器。该加载器接受以下参数:
- `train_dataset`:训练集的实例,即之前创建的 `train_dataset`。
- `batch_size`:每个批次中的样本数量,由命令行参数 `args.batch_size` 指定。
- `num_workers`:用于数据加载的线程数,由命令行参数 `args.num_workers` 指定。
- `shuffle`:是否对数据进行随机洗牌,这里设置为 `True`,表示训练集在每个 epoch 之前会被打乱顺序。
- `drop_last`:如果数据集大小不能被批次大小整除,是否丢弃最后一个不完整的批次,这里设置为 `True`,表示如果最后一个批次不满足批次大小,则会被丢弃。
类似地,使用 `data.DataLoader()` 函数创建了一个名为 `valid_dataloader` 的验证集数据加载器。参数设置与训练集数据加载器类似,但是批次大小由命令行参数 `args.n_samples` 指定。
最后,代码打印了训练集和验证集的图像数量,分别使用 `len(train_dataset)` 和 `len(valid_dataset)` 获取。这样可以在控制台上看到训练集和验证集中的图像数量。
总结起来,这段代码创建了训练集和验证集的数据加载器,并打印了它们的图像数量。数据加载器将在训练和验证模型时用于按批次加载数据。
train_loader = torch.utils.data.DataLoader( train_set, batch_size=args.batch_size, num_workers=args.workers, pin_memory =True, shuffle=True)
这段代码创建了一个用于训练的数据加载器(DataLoader),用于从训练集(train_set)中加载数据并生成小批量的数据样本。
参数说明:
- train_set: 训练集数据集对象,包含了训练数据样本。
- batch_size: 每个小批量中的样本数量。
- num_workers: 加载数据时使用的线程数。
- pin_memory: 是否将加载的数据存储在固定的内存中,以提高数据读取效率(通常在使用GPU时设置为True)。
- shuffle: 是否对训练集进行随机重排,以使每个epoch中的样本顺序随机化。
通过使用这个数据加载器,可以在训练过程中方便地迭代获取小批量的训练样本。每次迭代获取的样本都是经过shuffle和batch处理后的,并且可以利用多线程加速数据加载的过程。
阅读全文