用python写一个代码,要求,创建一个新的空数组,将原图片边缘检测后的形式保存在新数组下,然后在新数组的图片以45度角度在一个方向上隔一段间距画线,画满整张图片,然后将结果展示出来。然后判断每条线与新数组中边缘检测后的图像的交点数分别为多少
时间: 2024-06-10 09:06:10 浏览: 210
好的,我明白了您的要求。下面是Python代码实现:
``` python
import cv2
import numpy as np
# 读取原图片
img = cv2.imread('原图片路径')
# 转为灰度图像并进行边缘检测
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 30, 150)
# 创建新数组
new_arr = np.zeros_like(edges)
# 画斜线
# 线段长度
line_len = 20
# 线段间距
line_gap = 10
# 角度
theta = 45
# 弧度
rad = np.deg2rad(theta)
# 步长
step = line_len + line_gap
# 图像对角线长度
diag_len = int(np.ceil(np.sqrt(edges.shape[0]**2 + edges.shape[1]**2)))
# 起点坐标
start_x = -diag_len * np.sin(rad)
start_y = diag_len * np.cos(rad)
for i in range(-diag_len, diag_len, step):
x1 = int(start_x + i * np.cos(rad))
y1 = int(start_y + i * np.sin(rad))
x2 = int(start_x + (i + line_len) * np.cos(rad))
y2 = int(start_y + (i + line_len) * np.sin(rad))
cv2.line(new_arr, (x1, y1), (x2, y2), (255, 255, 255), 1)
# 统计每条线与边缘检测后的图像的交点数
counts = []
for i in range(-diag_len, diag_len, step):
line = np.zeros_like(edges)
x1 = int(start_x + i * np.cos(rad))
y1 = int(start_y + i * np.sin(rad))
x2 = int(start_x + (i + line_len) * np.cos(rad))
y2 = int(start_y + (i + line_len) * np.sin(rad))
cv2.line(line, (x1, y1), (x2, y2), (255, 255, 255), 1)
intersect = cv2.bitwise_and(edges, line)
counts.append(np.count_nonzero(intersect))
# 显示结果
cv2.imshow("New Array", new_arr)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 输出交点数
print(counts)
```
需要替换代码中的“原图片路径”为实际的图片路径。
阅读全文