test_label = torch.argmax(torch.tensor(mnistDataSet.test_label), dim=1)是什么意思

时间: 2023-05-26 15:07:24 浏览: 48
这段代码的功能是将MNIST数据集中的测试标签(labels)从one-hot编码的形式转换成类别序号的形式,即将10个二进制数字(0或1)编码成一个十进制数字,表示该数字在数据集中对应的真实分类。这个过程通过对one-hot编码的tensor执行argmax操作来实现。其中dim=1表示对每一行(对应一个样本)进行argmax操作,得到一个标量值,即该样本所属的类别。
相关问题

def dataSetBalanceAllocation(self): mnistDataSet = GetDataSet(self.data_set_name, self.is_iid) test_data = torch.tensor(mnistDataSet.test_data) test_label = torch.argmax(torch.tensor(mnistDataSet.test_label), dim=1) self.test_data_loader = DataLoader(TensorDataset( test_data, test_label), batch_size=100, shuffle=False) train_data = mnistDataSet.train_data train_label = mnistDataSet.train_label shard_size = mnistDataSet.train_data_size // self.num_of_clients // 2 shards_id = np.random.permutation(mnistDataSet.train_data_size // shard_size) #permutation:排列 for i in range(self.num_of_clients): shards_id1 = shards_id[i * 2] shards_id2 = shards_id[i * 2 + 1] data_shards1 = train_data[shards_id1 * shard_size: shards_id1 * shard_size + shard_size] data_shards2 = train_data[shards_id2 * shard_size: shards_id2 * shard_size + shard_size] label_shards1 = train_label[shards_id1 * shard_size: shards_id1 * shard_size + shard_size] label_shards2 = train_label[shards_id2 * shard_size: shards_id2 * shard_size + shard_size] local_data, local_label = np.vstack((data_shards1, data_shards2)), np.vstack((label_shards1, label_shards2)) # vstack:data和label拼接 local_label = np.argmax(local_label, axis=1) someone = client(TensorDataset(torch.tensor(local_data), torch.tensor(local_label)), self.dev) self.clients_set['client{}'.format(i)] = someone 解释这段代码

这段代码是一个类中的方法`dataSetBalanceAllocation()`。该方法用于对数据集进行平衡分配给多个客户端。 首先,通过调用`GetDataSet()`函数获取`mnistDataSet`数据集对象。然后,将测试数据和测试标签转换为张量,并使用`DataLoader`创建一个测试数据加载器,每个批次大小为100,不打乱顺序。 接下来,将训练数据和训练标签存储在`train_data`和`train_label`中。然后,计算每个客户端的数据分片大小,即`shard_size`,它是训练数据总量除以客户端数量除以2(因为每个客户端获取两个分片)。 通过使用`np.random.permutation()`函数对`mnistDataSet.train_data_size // shard_size`进行排列,得到一个随机的分片索引数组`shards_id`。 接下来,使用循环为每个客户端分配数据。在每次迭代中,通过索引数组`shards_id`获取两个分片的索引`shards_id1`和`shards_id2`。然后,通过这些索引从训练数据和标签中选择对应的数据分片。将这些分片堆叠起来,形成本地的数据和标签,并将其封装为`TensorDataset`对象。 然后,创建一个名为`someone`的客户端对象,该对象是使用上述本地数据和标签创建的。将该客户端对象添加到`self.clients_set`字典中,键为`'client{}'.format(i)`。 通过这样的操作,数据集被平衡地分配给了多个客户端,每个客户端都有两个数据分片。你可以通过访问`self.clients_set`来访问每个客户端的数据和标签。

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

好的,以下是使用 LDAM 损失函数训练模型的代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchvision import datasets, transforms from ldam_loss import LDAMLoss # 假设你已经将 LDAM 损失函数的代码存放在 ldam_loss.py 文件中 # 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 use_ema = True model_ema_decay = 0.9998 start_epoch = 1 seed = 1 # 设置随机种子 def seed_everything(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes ) # 加载数据集 train_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./data', train=True, download=True, transform=transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])), batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True ) test_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])), batch_size=BATCH_SIZE, shuffle=False, num_workers=4, pin_memory=True ) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x # 初始化模型和优化器 model = Net().to(DEVICE) optimizer = optim.Adam(model.parameters(), lr=model_lr) # 如果 resume 不为空,则从指定的 checkpoint 恢复模型和优化器 if resume is not None: checkpoint = torch.load(resume) model.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) start_epoch = checkpoint['epoch'] + 1 Best_ACC = checkpoint['Best_ACC'] print(f"Resuming from checkpoint {resume}, epoch {start_epoch}") # 使用 LDAM 损失函数 cls_num_list = [1000] * classes criterion = LDAMLoss(cls_num_list, max_m=0.5, s=30).to(DEVICE) # 训练模型 for epoch in range(start_epoch, EPOCHS + 1): train_loss = 0 train_acc = 0 model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(DEVICE), target.to(DEVICE) data, target_a, target_b, lam = mixup_fn(data, target) # mixup 增强 optimizer.zero_grad() output = model(data) loss = lam * criterion(output, target_a) + (1 - lam) * criterion(output, target_b) # 计算 mixup 后的损失函数 loss.backward() if CLIP_GRAD: torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) # 梯度裁剪 optimizer.step() train_loss += loss.item() * data.size(0) pred = output.argmax(dim=1, keepdim=True) train_acc += pred.eq(target.view_as(pred)).sum().item() train_loss /= len(train_loader.dataset) train_acc /= len(train_loader.dataset) # 计算测试集上的损失和准确率 test_loss = 0 test_acc = 0 model.eval() with torch.no_grad(): for data, target in test_loader: data, target = data.to(DEVICE), target.to(DEVICE) output = model(data) test_loss += F.cross_entropy(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) test_acc += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) test_acc /= len(test_loader.dataset) # 更新 Best_ACC 并保存模型 if test_acc > Best_ACC: Best_ACC = test_acc state = { 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch, 'Best_ACC': Best_ACC } torch.save(state, f'model_epoch_{epoch}_acc_{Best_ACC:.4f}.pth') # 打印训练日志 print(f"Epoch {epoch}/{EPOCHS}: train_loss={train_loss:.4f} train_acc={train_acc:.4f} test_loss={test_loss:.4f} test_acc={test_acc:.4f}") ``` 这里使用的是 CIFAR-10 数据集和一个简单的卷积神经网络模型,你需要将其替换成你自己的数据集和模型。

相关推荐

这是对单个文件进行预测“import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt from model import convnext_tiny as create_model def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"using {device} device.") num_classes = 5 img_size = 224 data_transform = transforms.Compose( [transforms.Resize(int(img_size * 1.14)), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image img_path = "../tulip.jpg" assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=num_classes).to(device) # load model weights model_weight_path = "./weights/best_model.pth" model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy()) plt.title(print_res) for i in range(len(predict)): print("class: {:10} prob: {:.3}".format(class_indict[str(i)], predict[i].numpy())) plt.show() if __name__ == '__main__': main()”,改为对指定文件夹下的左右文件进行预测,并绘制混淆矩阵

def compute_mAP(trn_binary, tst_binary, trn_label, tst_label): """ compute mAP by searching testset from trainset https://github.com/flyingpot/pytorch_deephash """ for x in trn_binary, tst_binary, trn_label, tst_label: x.long() AP = [] Ns = torch.arange(1, trn_binary.size(0) + 1) Ntest = torch.arange(1, tst_binary.size(0) + 1) print("trn_binary.size(0):",trn_binary.size(0)) print("tst_binary.size(0):", tst_binary.size(0)) print("Ns:",Ns) print("Ns:", Ntest) # print("Ns(train):",Ns) for i in range(tst_binary.size(0)): query_label, query_binary = tst_label[i], tst_binary[i] # 把测试图像编码和标签赋值给->查询图像编码和标签 _, query_result = torch.sum((query_binary != trn_binary).long(), dim=1).sort() # 判断查询图像编码是否等于训练图像编码,相等的总和,并排序。 print("查询标签-----------------------------------------------------:",query_label) print("查询二进制:", query_binary) print(len(query_binary)) print("查询结果:",query_result) print("是否相等:",query_binary != trn_binary) print("查询结果1:", torch.sum((query_binary != trn_binary).long(), dim=1)) print("查询结果2:",torch.sum((query_binary != trn_binary).long(), dim=1).sort()) correct = (query_label == trn_label[query_result]).float() # 正确匹配的二进制编码个数 print("trn_label[query_result]:",trn_label[query_result]) num_ones = torch.sum(correct == 1) print("查询正确的个数:",num_ones) print("查询正确:",correct) P = torch.cumsum(correct, dim=0) / Ns print("torch.cumsum(correct, dim=0)",torch.cumsum(correct, dim=0)) print("查询正确/Ns",torch.Tensor(P)) #每个位置的精度 P AP.append(torch.sum(P * correct) / torch.sum(correct)) # print("---:",AP) acc = num_ones / tst_binary.size(0) print("ACC================================== ", acc) mAP = torch.mean(torch.Tensor(AP)) return mAP 请问怎么将这段代码改成EER评估指标的代码

Traceback (most recent call last): File "D:\daima\KalmanNet_TSP-main\main_linear_CA.py", line 182, in <module> Plot.plotTraj_CA(test_target, KF_out, KNet_out, dim=0, file_name=PlotfolderName+PlotfileName0)#Position File "D:\daima\KalmanNet_TSP-main\Plot.py", line 350, in plotTraj_CA plt.plot(x_plt, RTS_out[0][0,:], label=legend[2]) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\matplotlib\pyplot.py", line 2840, in plot return gca().plot( File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\matplotlib\axes\_axes.py", line 1745, in plot self.add_line(line) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\matplotlib\axes\_base.py", line 1964, in add_line self._update_line_limits(line) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\matplotlib\axes\_base.py", line 1986, in _update_line_limits path = line.get_path() File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\matplotlib\lines.py", line 1011, in get_path self.recache() File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\matplotlib\lines.py", line 658, in recache y = _to_unmasked_float_array(yconv).ravel() File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\matplotlib\cbook\__init__.py", line 1289, in _to_unmasked_float_array return np.asarray(x, float) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\numpy\core\_asarray.py", line 102, in asarray return array(a, dtype, copy=False, order=order) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\_tensor.py", line 680, in __array__ return self.numpy().astype(dtype, copy=False) TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

ISP图像工程师需要掌握的知识技能

ISP图像工程师需要掌握一些相关的知识和技能,包括: 1. 图像处理的基本知识和方法,包括图像增强、滤波、分割、降噪等 2. 熟练掌握一门编程语言,可以使用这门语言实现图像处理算法,常用的编程语言包括C++、Python、Matlab等 3. 了解图像传感器的工作原理和特性,以及图像传感器的校准和校正 4. 熟悉图像处理的软件工具,包括Photoshop、GIMP等 5. 了解图像处理硬件系统的基本知识,包括DSP、FPGA、GPU等 6. 具有良好的数学功底,能够利用数学方法解决图像处理中的问题 7. 具有较强的解决问题的能力,能够独立分析和解决实际问题 8. 具有较强的沟通