stm32单片机如何控制四轮驱动麦克纳姆轮小车

时间: 2023-11-30 08:04:37 浏览: 53
控制四轮驱动麦克纳姆轮小车需要用到PWM信号控制电机的转速和方向,同时还需要使用编码器实时反馈电机的转速和位置,以便精确控制小车的运动。 以下是一个简单的控制程序示例,可以供参考: 1. 首先定义各个电机的控制引脚和编码器引脚: ```C #define PWM_TIM TIM3 #define PWM_CH1 GPIO_Pin_6 #define PWM_CH2 GPIO_Pin_7 #define PWM_CH3 GPIO_Pin_8 #define PWM_CH4 GPIO_Pin_9 #define ENCODER_TIM TIM4 #define ENCODER_CH1 GPIO_Pin_6 #define ENCODER_CH2 GPIO_Pin_7 #define ENCODER_CH3 GPIO_Pin_8 #define ENCODER_CH4 GPIO_Pin_9 ``` 2. 初始化PWM信号和编码器: ```C void PWM_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct; TIM_OCInitTypeDef TIM_OCInitStruct; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE); GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStructure.GPIO_Pin = PWM_CH1 | PWM_CH2 | PWM_CH3 | PWM_CH4; GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOC, GPIO_PinSource6, GPIO_AF_TIM3); GPIO_PinAFConfig(GPIOC, GPIO_PinSource7, GPIO_AF_TIM3); GPIO_PinAFConfig(GPIOC, GPIO_PinSource8, GPIO_AF_TIM3); GPIO_PinAFConfig(GPIOC, GPIO_PinSource9, GPIO_AF_TIM3); TIM_TimeBaseInitStruct.TIM_Prescaler = 0; TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInitStruct.TIM_Period = 3999; TIM_TimeBaseInitStruct.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseInitStruct.TIM_RepetitionCounter = 0; TIM_TimeBaseInit(PWM_TIM, &TIM_TimeBaseInitStruct); TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStruct.TIM_Pulse = 0; TIM_OC1Init(PWM_TIM, &TIM_OCInitStruct); TIM_OC2Init(PWM_TIM, &TIM_OCInitStruct); TIM_OC3Init(PWM_TIM, &TIM_OCInitStruct); TIM_OC4Init(PWM_TIM, &TIM_OCInitStruct); TIM_Cmd(PWM_TIM, ENABLE); } void Encoder_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct; TIM_ICInitTypeDef TIM_ICInitStruct; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStructure.GPIO_Pin = ENCODER_CH1 | ENCODER_CH2 | ENCODER_CH3 | ENCODER_CH4; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_TIM4); GPIO_PinAFConfig(GPIOB, GPIO_PinSource7, GPIO_AF_TIM4); GPIO_PinAFConfig(GPIOB, GPIO_PinSource8, GPIO_AF_TIM4); GPIO_PinAFConfig(GPIOB, GPIO_PinSource9, GPIO_AF_TIM4); TIM_TimeBaseInitStruct.TIM_Prescaler = 0; TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInitStruct.TIM_Period = 65535; TIM_TimeBaseInitStruct.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseInitStruct.TIM_RepetitionCounter = 0; TIM_TimeBaseInit(ENCODER_TIM, &TIM_TimeBaseInitStruct); TIM_ICInitStruct.TIM_Channel = TIM_Channel_1; TIM_ICInitStruct.TIM_ICPolarity = TIM_ICPolarity_Rising; TIM_ICInitStruct.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStruct.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStruct.TIM_ICFilter = 0; TIM_ICInit(ENCODER_TIM, &TIM_ICInitStruct); TIM_ICInitStruct.TIM_Channel = TIM_Channel_2; TIM_ICInitStruct.TIM_ICPolarity = TIM_ICPolarity_Rising; TIM_ICInitStruct.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStruct.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStruct.TIM_ICFilter = 0; TIM_ICInit(ENCODER_TIM, &TIM_ICInitStruct); TIM_ICInitStruct.TIM_Channel = TIM_Channel_3; TIM_ICInitStruct.TIM_ICPolarity = TIM_ICPolarity_Rising; TIM_ICInitStruct.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStruct.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStruct.TIM_ICFilter = 0; TIM_ICInit(ENCODER_TIM, &TIM_ICInitStruct); TIM_ICInitStruct.TIM_Channel = TIM_Channel_4; TIM_ICInitStruct.TIM_ICPolarity = TIM_ICPolarity_Rising; TIM_ICInitStruct.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStruct.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStruct.TIM_ICFilter = 0; TIM_ICInit(ENCODER_TIM, &TIM_ICInitStruct); TIM_EncoderInterfaceConfig(ENCODER_TIM, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, TIM_ICPolarity_Rising); TIM_SetCounter(ENCODER_TIM, 0); TIM_Cmd(ENCODER_TIM, ENABLE); } ``` 3. 编写PWM控制函数: ```C void SetPWM(uint16_t ch1, uint16_t ch2, uint16_t ch3, uint16_t ch4) { TIM_SetCompare1(PWM_TIM, ch1); TIM_SetCompare2(PWM_TIM, ch2); TIM_SetCompare3(PWM_TIM, ch3); TIM_SetCompare4(PWM_TIM, ch4); } ``` 4. 编写电机控制函数: ```C void SetMotorSpeed(int16_t speed1, int16_t speed2, int16_t speed3, int16_t speed4) { uint16_t pwm1, pwm2, pwm3, pwm4; pwm1 = abs(speed1); pwm2 = abs(speed2); pwm3 = abs(speed3); pwm4 = abs(speed4); if (speed1 >= 0) { GPIO_SetBits(GPIOC, GPIO_Pin_0); GPIO_ResetBits(GPIOC, GPIO_Pin_1); } else { GPIO_ResetBits(GPIOC, GPIO_Pin_0); GPIO_SetBits(GPIOC, GPIO_Pin_1); } if (speed2 >= 0) { GPIO_SetBits(GPIOC, GPIO_Pin_2); GPIO_ResetBits(GPIOC, GPIO_Pin_3); } else { GPIO_ResetBits(GPIOC, GPIO_Pin_2); GPIO_SetBits(GPIOC, GPIO_Pin_3); } if (speed3 >= 0) { GPIO_SetBits(GPIOC, GPIO_Pin_4); GPIO_ResetBits(GPIOC, GPIO_Pin_5); } else { GPIO_ResetBits(GPIOC, GPIO_Pin_4); GPIO_SetBits(GPIOC, GPIO_Pin_5); } if (speed4 >= 0) { GPIO_SetBits(GPIOC, GPIO_Pin_6); GPIO_ResetBits(GPIOC, GPIO_Pin_7); } else { GPIO_ResetBits(GPIOC, GPIO_Pin_6); GPIO_SetBits(GPIOC, GPIO_Pin_7); } SetPWM(pwm1, pwm2, pwm3, pwm4); } ``` 5. 编写控制程序,通过串口接收控制指令并控制小车运动: ```C int main(void) { // 初始化各个引脚和模块 PWM_Init(); Encoder_Init(); USART_Init(); int16_t vx, vy, vw; int16_t speed1, speed2, speed3, speed4; while (1) { // 从串口接收控制指令 USART_Receive(&vx, &vy, &vw); // 计算电机转速 speed1 = vx - vy - vw; speed2 = vx + vy + vw; speed3 = vx + vy - vw; speed4 = vx - vy + vw; // 控制电机 SetMotorSpeed(speed1, speed2, speed3, speed4); } } ``` 以上是一个简单的控制程序示例,实际应用中还需要根据实际情况进行调整和完善。

相关推荐

最新推荐

recommend-type

基于STM32单片机流水灯仿真与程序设计

STM32单片机流水灯仿真与程序设计 摘要 本次程序设计和仿真是基于Proteus和keil的环境对STM32F103系列单片机进行流水灯设计,通过配置STM32的GPIO工作模式,实现LED的点亮和熄灭;通过配置8位流水灯程序设计,实现灯...
recommend-type

STM32单片机解码NEC红外控制器C语言程序

红外遥控器发射码值的协议有很多种,在百度文库里搜“史​上​最​全​的​红​外​遥​控​器​编​码​协​议”,可以看到是有43种,但是我们今天是解码NEC红外协议的,几乎所有的开发板带的小遥控器都是这个协议...
recommend-type

【单片机项目】制作一辆基于STM32的智能小车——概述

去年九月买了一块STM32F429的开发板,直到今年三月份因为疫情不能返校宅在家里才算把教学视频都看完了,中途因为课程停了一段时间,就很长一段时间没有继续学习,所以这个速度算是极慢极慢的了。 我走进这一领域的是...
recommend-type

STM32单片机驱动LCD1602液晶程序

最近看到网上很多人都在找STM32单片机驱动LCD1602液晶程序,有的人写的比较复杂刚好自己最近也在搞STM32单片机。就花了点时间写出一份仅供参考和学习。单片机IO驱动能力弱这里用的是10K上拉电阻,也可以采用74HC245...
recommend-type

基于STM32单片机的太阳能充电器.pdf

摘要: 太阳能作为当前世界上一种清洁环保的重要可再生能源,利用太阳能进行发电可有效的改善和...系统主要由太阳能板、STM32F103C8T6控制电路、单片机电压电路采集和监控电路、TL494可调降压恒压电路、按键电路等组成
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

系统函数是1+5*z^(-1)+5*z^(-2)+z^(-3) ,给出Matlab中求该系统频率响应的代码

假设系统函数为H(z),则其频率响应为H(w),可以通过以下代码求解: ``` syms z w H = 1 + 5*z^(-1) + 5*z^(-2) + z^(-3); % 定义系统函数 Hw = subs(H, z, exp(1i*w)); % 将z用e^(jw)代替 Hw = simplify(Hw); % 化简 absHw = abs(Hw); % 求幅度响应 angleHw = angle(Hw); % 求相位响应 ``` 其中,`simplify`函数用于化简表达式,`abs`函数用于求绝对值,`angle`函数用于求相位。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。