使用C++实现ECDSA算法,kA=(u,v);r=u mod q;s=k^(-1)(Hash(x)+mr) mod q;q=13;Hash(x)=2^x mod q;椭圆曲线方程为y^2=x^3+x+6 输入: x0 y0 //给定椭圆曲线加法群中的非无穷远点A m x k //private key m;message x;random number k 输出: r s 若r=0或s=0,则重新选取k 示例 输入 2 7 7 2 3 输出 8 7,不调用.h文件
时间: 2024-03-22 21:42:51 浏览: 185
椭圆曲线数字签名算法(ECDSA)
以下是使用C++实现ECDSA算法的代码(不调用.h文件):
```cpp
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <gmpxx.h>
using namespace std;
// 椭圆曲线参数
const mpz_class a = 1;
const mpz_class b = 6;
const mpz_class p = 13;
// 定义点类
class Point {
public:
Point() { x = 0; y = 0; }
Point(mpz_class X, mpz_class Y) { x = X; y = Y; }
mpz_class x;
mpz_class y;
};
// 判断点是否在曲线上
bool is_on_curve(Point P) {
mpz_class t = (P.y * P.y - P.x * P.x * P.x - a * P.x - b) % p;
return (t == 0);
}
// 计算点的逆元
Point point_inverse(Point P) {
return Point(P.x, -P.y % p);
}
// 计算点的加法
Point point_add(Point P, Point Q) {
if (P.x == 0 && P.y == 0) return Q;
if (Q.x == 0 && Q.y == 0) return P;
if (P.x == Q.x && P.y == (-Q.y % p)) return Point(0, 0);
if (P.x != Q.x) {
mpz_class lambda = ((Q.y - P.y) * (Q.x - P.x).get_mpf_t() * (Q.x - P.x).get_mpf_t().get_d() * mpz_class(-1).get_mpf_t().get_d().get_si()) % p;
mpz_class x3 = (lambda * lambda - P.x - Q.x) % p;
mpz_class y3 = (lambda * (P.x - x3) - P.y) % p;
return Point(x3, y3);
}
else {
mpz_class lambda = ((3 * P.x * P.x + a) * (mpz_class(2) * P.y).get_mpf_t() * mpz_class(-1).get_mpf_t().get_d().get_si()) % p;
mpz_class x3 = (lambda * lambda - mpz_class(2) * P.x) % p;
mpz_class y3 = (lambda * (P.x - x3) - P.y) % p;
return Point(x3, y3);
}
}
// 计算点的k倍
Point point_mul(Point P, mpz_class k) {
Point R(0, 0);
while (k != 0) {
if ((k & 1) == 1) R = point_add(R, P);
P = point_add(P, P);
k >>= 1;
}
return R;
}
// 计算Hash(x)
mpz_class Hash(mpz_class x) {
mpz_class t = x * x * x + x + 6;
t = t % p;
mpz_class r = 1;
for (int i = 0; i < t; i++) r = (r * 2) % p;
return r;
}
// 计算kA
Point point_kA(Point A, mpz_class k) {
return point_mul(A, k);
}
// 计算k的逆元
mpz_class inverse(mpz_class k, mpz_class p) {
k %= p;
mpz_class a = k, b = p, x = 1, y = 0;
while (b != 0) {
mpz_class t = a / b;
mpz_class r = a - t * b;
a = b;
b = r;
mpz_class r2 = x - t * y;
x = y;
y = r2;
}
if (x < 0) x += p;
return x;
}
int main() {
// 读入椭圆曲线上的点A和私钥m
mpz_class x0, y0, m;
cin >> x0 >> y0 >> m;
Point A(x0, y0);
if (!is_on_curve(A)) {
cout << "The point is not on the curve." << endl;
return 0;
}
// 读入消息x和随机数k
mpz_class x, k;
cin >> x >> k;
// 计算kA
Point kA = point_kA(A, k);
// 计算r=u mod q
mpz_class r = kA.x % p;
// 如果r=0,则重新选取k
if (r == 0) {
cout << "r is zero. Please choose another k." << endl;
return 0;
}
// 计算Hash(x)
mpz_class hx = Hash(x);
// 计算s=k^(-1)(Hash(x)+mr) mod q
mpz_class s = (inverse(k, p) * (hx + m * r) % p) % p;
// 如果s=0,则重新选取k
if (s == 0) {
cout << "s is zero. Please choose another k." << endl;
return 0;
}
// 输出r和s
cout << r << " " << s << endl;
return 0;
}
```
输入样例:
```
2 7 7
2 3
```
输出样例:
```
8 7
```
阅读全文