loss = nn.functional.cross_entropy(x, target, ignore_index=ignore_index, weight=loss_weight)
时间: 2024-05-19 15:16:59 浏览: 170
这个问题涉及到深度学习中的损失函数。在这里,使用的是PyTorch中的交叉熵损失函数(cross_entropy),其中x表示模型的输出,target表示标签,ignore_index表示忽略某些标签,loss_weight表示权重。这个函数用于帮助计算出模型的预测结果和真实结果之间的距离,以便可以进行反向传播和更新模型参数。
相关问题
pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((-1, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) classes=7, cls_num_list = np.zeros(classes) for , label in train_loader.dataset: cls_num_list[label] += 1 criterion_train = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30) criterion_val = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30) for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) # 3、将数据输入mixup_fn生成mixup数据 samples, targets = mixup_fn(data, target) targets = torch.tensor(targets).to(torch.long) # 4、将上一步生成的数据输入model,输出预测结果,再计算loss output = model(samples) # 5、梯度清零(将loss关于weight的导数变成0) optimizer.zero_grad() # 6、若使用混合精度 if use_amp: with torch.cuda.amp.autocast(): # 开启混合精度 loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss scaler.scale(loss).backward() # 梯度放大 torch.nn.utils.clip_grad_norm(model.parameters(), CLIP_GRAD) # 梯度裁剪,防止梯度爆炸 scaler.step(optimizer) # 更新下一次迭代的scaler scaler.update() 报错:File "/home/adminis/hpy/ConvNextV2_Demo/models/losses.py", line 53, in forward return F.cross_entropy(logit, target, weight=self.weight) File "/home/adminis/anaconda3/envs/wln/lib/python3.9/site-packages/torch/nn/functional.py", line 2824, in cross_entropy return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index) RuntimeError: multi-target not supported at /pytorch/aten/src/THCUNN/generic/ClassNLLCriterion.cu:15
这个报错是因为 `target` 中包含了多个标签,而 `F.cross_entropy` 函数只支持单标签的情况。你可以将 `target` 转换成一个 1D 的 Tensor,其中每个元素表示一个样本的类别标签。可以使用 `torch.flatten()` 或者 `torch.view()` 来实现这个转换。修改后的代码如下:
```python
def forward(self, x, target):
index = torch.zeros_like(x, dtype=torch.uint8)
index_float = index.type(torch.cuda.FloatTensor)
batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1
batch_m = batch_m.view((-1, 1)) # size=(batch_size, 1)
x_m = x - batch_m
output = torch.where(index, x_m, x)
if self.weight is not None:
output = output * self.weight[None, :]
target = torch.flatten(target) # 将 target 转换成 1D Tensor
logit = output * self.s
return F.cross_entropy(logit, target, weight=self.weight)
```
File "C:\Users\Administrator\venvnlp\lib\site-packages\torch\nn\functional.py", line 3029, in cross_entropy return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing) RuntimeError: "log_softmax_lastdim_kernel_impl" not implemented for 'Long'
这个错误是由于你的目标张量 `target` 的数据类型为 `torch.long`(或 `torch.int64`)而不是 `torch.float32` 导致的。
`torch.nn.functional.cross_entropy` 函数要求输入的目标张量 `target` 的数据类型与输入张量 `input` 的数据类型相匹配,通常为浮点型数据类型(如 `torch.float32`)。
要解决这个问题,你可以将目标张量 `target` 的数据类型转换为 `torch.long` 或者将输入张量 `input` 的数据类型转换为 `torch.float32`。下面是两种解决方案的示例:
解决方案一:将目标张量的数据类型转换为 torch.long
```python
import torch
input = torch.randn(3, 5) # 输入张量
target = torch.tensor([0, 1, 2], dtype=torch.long) # 目标张量,数据类型为 torch.long
loss = torch.nn.functional.cross_entropy(input, target)
```
解决方案二:将输入张量的数据类型转换为 torch.float32
```python
import torch
input = torch.randn(3, 5) # 输入张量,数据类型为 torch.float32
target = torch.tensor([0, 1, 2]) # 目标张量
loss = torch.nn.functional.cross_entropy(input.float(), target)
```
请根据你的具体情况选择相应的解决方案。
希望能帮到你!如果还有其他问题,请随时提问。
阅读全文