检查程序错误“clc;clear all; % 定义系统模型 A = [1 0.5 0; 0 1 1; 0 0 1]; B = [1 0; 0 1; 1 1]; C = [1 0 0; 0 1 0]; D = [0 0; 0 0]; sys = ss(A, B, C, D); % 设计控制器 nmeas = 2; % 测量信号数 ncont = 3; % 控制输入数 W1 = eye(nmeas); % 测量加权矩阵 W2 = eye(ncont); % 控制加权矩阵 gamma = 1; % H∞性能指标 [K, CL, gamma] = hinfsyn(sys, nmeas, ncont, W1, W2, gamma); % 合成控制系统 sys_cl = feedback(sys * K, eye(nmeas)); % 仿真系统 t = 0:0.01:10; u = [ones(size(t)); sin(2*t)]; % 控制输入 [y, t] = lsim(sys_cl, u, t); % 系统响应 plot(t, y);”
时间: 2023-08-05 22:04:20 浏览: 93
该程序没有语法错误,但是存在一个逻辑错误。控制输入数应该与系统模型中的控制输入数相同,而在该程序中,控制输入数指定为3,而系统模型中只有2个控制输入。
修改程序中的控制输入数为2即可解决该问题,修改后的程序如下:
```matlab
clc;
clear all;
% 定义系统模型
A = [1 0.5 0; 0 1 1; 0 0 1];
B = [1 0; 0 1; 1 1];
C = [1 0 0; 0 1 0];
D = [0 0; 0 0];
sys = ss(A, B, C, D);
% 设计控制器
nmeas = 2; % 测量信号数
ncont = 2; % 控制输入数
W1 = eye(nmeas); % 测量加权矩阵
W2 = eye(ncont); % 控制加权矩阵
gamma = 1; % H∞性能指标
[K, CL, gamma] = hinfsyn(sys, nmeas, ncont, W1, W2, gamma);
% 合成控制系统
sys_cl = feedback(sys * K, eye(nmeas));
% 仿真系统
t = 0:0.01:10;
u = [ones(size(t)); sin(2*t)]; % 控制输入
[y, t] = lsim(sys_cl, u, t); % 系统响应
plot(t, y);
```
相关问题
clear all;close all;clc; f=1/8; x=1:512; y=1:512; [X,Y]=meshgrid(x,y); z=0.5*peaks(512); mesh(z); I11=0.5+0.5*cos(2*pi*f*X); I21=0.5+0.5*cos(2*pi*f*X+z); I12=0.5+0.5*cos(2*pi*f*X+pi*2/3); I22=0.5+0.5*cos(2*pi*f*X+z+pi*2/3); I13=0.5+0.5*cos(2*pi*f*X+4*pi/3); I23=0.5+0.5*cos(2*pi*f*X+z+4*pi/3); x1=1:512; y1=1:512; [Y1,X1]=meshgrid(y1,x1); I31=0.5+0.5*cos(2*pi*f*X1); I41=0.5+0.5*cos(2*pi*f*X1+z); I32=0.5+0.5*cos(2*pi*f*X1+pi*2/3); I42=0.5+0.5*cos(2*pi*f*X1+z+pi*2/3); I33=0.5+0.5*cos(2*pi*f*X1+pi*4/3); I43=0.5+0.5*cos(2*pi*f*X1+z+pi*4/3); x2=1:512; y2=1:512; [X2,Y2]=meshgrid(x2,y2); I51=0.5+0.5*cos(2*pi*f*X2+2*pi*f*Y2); I61=0.5+0.5*cos(2*pi*f*X2+2*pi*f*Y2+z); I52=0.5+0.5*cos(2*pi*f*X2+2*pi*f*Y2+pi*2/3); I62=0.5+0.5*cos(2*pi*f*X2+2*pi*f*Y2+z+pi*2/3); I53=0.5+0.5*cos(2*pi*f*X2+2*pi*f*Y2+pi*4/3); I63=0.5+0.5*cos(2*pi*f*X2+2*pi*f*Y2+z+pi*4/3); A11=(reshape(I11,[],1)); A21=(reshape(I21,[],1)); A12=(reshape(I12,[],1)); A22=(reshape(I22,[],1)); A13=(reshape(I13,[],1)); A23=(reshape(I23,[],1)); A31=(reshape(I31,[],1)); A41=(reshape(I41,[],1)); A32=(reshape(I32,[],1)); A42=(reshape(I42,[],1)); A33=(reshape(I33,[],1)); A43=(reshape(I43,[],1)); A51=(reshape(I51,[],1)); A61=(reshape(I61,[],1)); A52=(reshape(I52,[],1)); A62=(reshape(I62,[],1)); A53=(reshape(I53,[],1)); A63=(reshape(I63,[],1)); z1=(reshape(z,[],1)); hh=[A11,A12,A13,A21,A22,A23,A31,A32,A33,A41,A42,A43,A51,A52,A53,A61,A62,A63,z1]; hh0=[A11,A12,A13,A21,A22,A23,A31,A32,A33,A41,A42,A43,A51,A52,A53,A61,A62,A63]; yfit = trainedModel2.predictFcn(hh0); hh2=reshape(yfit,512,512); hh3=hh2-z; mesh(z);figure; mesh(hh2);figure mesh(hh3) mesh(z);figure; hh2=(hh0)'; z2=(z1)';
这段代码可以看出是使用了相移法进行相位测量,其中采集了多张带有相移的图像,将这些图像通过一定的算法处理后得到了物体表面的相位信息,最后得到了物体表面的高度信息并通过三维网格图展示出来。
具体的实现过程如下:
1. 定义了物体表面的高度分布z,并通过peaks函数生成了一个二维的高度分布图。
2. 定义了相移的频率f,以及物体表面在每种相移情况下的图像I11 ~ I63。其中I11 ~ I23表示在x方向上进行相移,I31 ~ I43表示在y方向上进行相移,I51 ~ I63表示在x和y方向上同时进行相移。这些图像的相位差是通过z和相移频率f计算得到的。
3. 将所有的图像像素值展开成一维数组,并将这些数组按照顺序排列在一起,形成一个矩阵hh。同时,将没有高度信息的部分hh0提取出来。
4. 使用训练好的机器学习模型trainedModel2对hh0进行预测,得到了物体表面的高度信息hh2。
5. 将hh2与原始的高度分布z进行比较,得到了两者之间的差值hh3,通过三维网格图展示出来。
需要注意的是,这段代码中训练好的机器学习模型trainedModel2并没有给出,所以无法对其进行验证和优化。同时,在实际应用中,相位测量轮廓算法的参数设置和图像采集方式也需要根据具体情况进行优化和调整。
clc; du = pi/180; L1(1)=Link('theta',-123du,'a', 0, 'alpha',0,'qlim',[180,365],'modified'); L1(2)=Link('d',0,'a',185, 'alpha',0,'qlim',[3du,63du],'modified'); L1(3)=Link('d',90,'a', 0, 'alpha',pi/2,'qlim',[60du,120du],'modified'); L1(4)=Link('theta',0,'a', 120, 'alpha',pi/2,'qlim',[230,326],'modified'); Needle=SerialLink(L1,'name','Needle'); % 随机生成关节转角值,并计算末端执行器位姿矩阵 q_rand = (rand(1,4) - 0.5) . [pi, pi/2, pi/2, pi/2]; % 生成在[-pi/2, pi/2]范围内的随机角度值 T_rand = Needle.fkine(q_rand); % 输出结果 disp("随机生成的关节角度值:") disp(q_rand) disp("随机生成的末端执行器位姿矩阵:") disp(T_rand) 运行上述代码后,MATLAB命令窗口会输出随机生成的关节角度值和末端执行器位姿矩阵。B的命令窗口中执行,代码中的 Needle 是之前定义的机器人模型,需要先运行之前的代码以创建机器人模型。 以下是一个简单的例子,展示如何运行这段代码: 复制 % 定义机器人模型 clear; clc; du = pi/180; L1(1)=Link('theta',-123du,'a', 0, 'alpha',0,'qlim',[180,365],'modified'); L1(2)=Link('d',0,'a',185, 'alpha',0,'qlim',[3du,63du],'modified'); L1(3)=Link('d',90,'a', 0, 'alpha',pi/2,'qlim',[60du,120du],'modified'); L1(4)=Link('theta',0,'a', 120, 'alpha',pi/2,'qlim',[230,326],'modified'); Needle=SerialLink(L1,'name','Needle'); % 随机生成关节转角值,并计算末端执行器位姿矩阵 q_rand = (rand(1,4) - 0.5) . [pi, pi/2, pi/2, pi/2]; % 生成在[-pi/2, pi/2]范围内的随机角度值 T_rand = Needle.fkine(q_rand); % 输出结果 disp("随机生成的关节角度值:") disp(q_rand) disp("随机生成的末端执行器位姿矩阵:") disp(T_rand) ,将这段代码帮我续写用 MATLAB给我可视化这个位姿矩阵对应的机器人姿态。
可以使用MATLAB中的plot函数来可视化机器人姿态。具体步骤如下:
1. 定义机器人模型和末端执行器位姿矩阵:
```matlab
clc; clear; close all;
du = pi/180;
L1(1)=Link('theta',-123du,'a', 0, 'alpha',0,'qlim',[180,365],'modified');
L1(2)=Link('d',0,'a',185, 'alpha',0,'qlim',[3du,63du],'modified');
L1(3)=Link('d',90,'a', 0, 'alpha',pi/2,'qlim',[60du,120du],'modified');
L1(4)=Link('theta',0,'a', 120, 'alpha',pi/2,'qlim',[230,326],'modified');
Needle=SerialLink(L1,'name','Needle');
q_rand = (rand(1,4) - 0.5) . [pi, pi/2, pi/2, pi/2];
T_rand = Needle.fkine(q_rand);
```
2. 计算机器人各关节的位置:
```matlab
q = [0, 0, 0, 0];
tr = Needle.fkine(q);
p = tr.transl;
for i = 1:4
q(i) = q_rand(i);
tr = Needle.fkine(q);
P(:,i) = tr.transl;
end
```
3. 使用plot3函数绘制机器人姿态:
```matlab
figure(1)
Needle.plot(q_rand);
hold on;
plot3(P(1,:), P(2,:), P(3,:), '-o', 'LineWidth', 2, 'MarkerSize', 10, 'MarkerFaceColor', 'r', 'Color', 'r');
plot3(p(1), p(2), p(3), '*b', 'MarkerSize', 15, 'LineWidth', 2);
hold off;
grid on;
xlabel('X');
ylabel('Y');
zlabel('Z');
title('机器人姿态');
```
运行上述代码后,会弹出一个3D图形窗口,其中包含了机器人模型和末端执行器位姿矩阵对应的机器人姿态。其中,红色的点表示机器人各关节的位置,蓝色的星号表示机器人的基座位置。可以通过旋转3D图形来观察机器人的不同姿态。
阅读全文