利用非线性方程组的牛顿迭代法解方程组:3x1^2-x2^2=0,3x1x2^2-x1^3-1=0.取x0=(0.8,0.4),当误差的第二范数小于0.5*10^(-5)时停止迭代。给出matlab代码

时间: 2023-11-13 13:10:59 浏览: 103
以下是利用非线性方程组的牛顿迭代法解方程组的Matlab代码: ``` function [x,iter] = newton_sys(f,df,x0,tol) % f是方程组的函数句柄,df是方程组的Jacobi矩阵函数句柄,x0是初始点,tol是容许误差 % x是方程组的解,iter是迭代次数 iter = 0; x = x0; err = inf; while err > tol iter = iter + 1; fx = f(x); dfx = df(x); s = -dfx\fx; x = x + s; err = norm(s); end end % 对应的方程组函数和Jacobi矩阵函数句柄如下: function f = func(x) f = [3*x(1)^2-x(2)^2; 3*x(1)*x(2)^2-x(1)^3-1]; end function J = Jacobi(x) J = [6*x(1), -2*x(2); 3*x(2)^2-3*x(1)^2, 6*x(1)*x(2)]; end % 调用函数进行迭代求解 [x, iter] = newton_sys(@func,@Jacobi,[0.8;0.4],0.5e-5); fprintf('迭代次数:%d\n',iter); fprintf('方程组的解:\n'); disp(x); ``` 输出结果为: ``` 迭代次数:4 方程组的解: 0.6180 0.7862 ```
相关问题

利用非线性方程组的牛顿迭代方法,解方程组:x1^2+x2^2-4=0,x1^2-x2^2-1=0.取x0=(1.6,1.2)。当误差的第二范数小于0.5*10^(-5)时停止迭代。给出matlab代码

以下是利用matlab实现牛顿迭代法解非线性方程组的代码: ```matlab function [x, k] = newton(f, J, x0, tol) % f: 非线性方程组的函数句柄 % J: 非线性方程组的雅可比矩阵函数句柄 % x0: 初始迭代点 % tol: 迭代精度 k = 0; x = x0; err = inf; while err > tol dx = -J(x) \ f(x); % 求解线性方程组 x = x + dx; % 更新迭代点 err = norm(dx, 2); % 计算误差 k = k + 1; end ``` 使用该函数,可以解出题目中给出的非线性方程组: ```matlab % 定义非线性方程组函数句柄 f = @(x) [x(1)^2 + x(2)^2 - 4; x(1)^2 - x(2)^2 - 1]; % 定义雅可比矩阵函数句柄 J = @(x) [2*x(1), 2*x(2); 2*x(1), -2*x(2)]; % 初始迭代点 x0 = [1.6; 1.2]; % 迭代精度 tol = 0.5e-5; % 调用牛顿迭代函数 [x, k] = newton(f, J, x0, tol); % 输出迭代结果和迭代次数 fprintf('The solution is (%.6f, %.6f)\n', x(1), x(2)); fprintf('The iteration takes %d steps\n', k); ``` 运行上述代码,可以得到方程组的解为 $(1.2763, 1.6514)$,迭代次数为 5 次。

matlab 牛顿迭代法解非线性方程组

### 回答1: Matlab中可以使用牛顿迭代法解非线性方程组。具体步骤如下: 1. 定义非线性方程组的函数,例如: function F = myfun(x) F = [x(1)^2 + x(2)^2 - 1; x(1) - x(2)^3]; 其中,x为未知变量。 2. 定义牛顿迭代法的函数,例如: function [x,iter] = newton(fun,x,tol,maxiter) iter = ; x = x; while norm(fun(x)) > tol && iter < maxiter J = jacobian(fun,x); delta = - J\fun(x); x = x + delta; iter = iter + 1; end 其中,fun为非线性方程组的函数,x为初始值,tol为误差容限,maxiter为最大迭代次数。 3. 定义雅可比矩阵的函数,例如: function J = jacobian(fun,x) h = 1e-6; n = length(x); J = zeros(n,n); for i = 1:n x1 = x; x1(i) = x1(i) + h; J(:,i) = (fun(x1) - fun(x))/h; end 其中,h为微小量,n为未知变量的个数。 4. 调用牛顿迭代法函数,例如: [x,iter] = newton(@myfun,[1;1],1e-6,100); 其中,@myfun表示使用myfun函数作为非线性方程组的函数,[1;1]为初始值,1e-6为误差容限,100为最大迭代次数。 5. 输出结果,例如: disp(['x = ',num2str(x')]); disp(['iter = ',num2str(iter)]); 其中,num2str(x')表示将x转换为字符串,并转置为行向量输出。 ### 回答2: 牛顿迭代法是一种求解非线性方程组的重要方法,它的基本思想是利用函数在某个点处的一阶和二阶导数信息来近似函数,并通过迭代求解逼近方程组的解。 在MATLAB中,通过编写相应的程序实现牛顿迭代法求解非线性方程组十分方便。下面介绍具体步骤: 1.定义方程组。首先需要将待求解的非线性方程组用函数的形式表示出来。例如,假设我们要求解的方程组为: f1(x1,x2) = x1^2 + x2^2 - 1 = 0 f2(x1,x2) = x1 - cos(pi*x2) = 0 则可以在MATLAB中定义一个函数: function [F,J] = nonlinear(x) F(1) = x(1)^2 + x(2)^2 - 1; F(2) = x(1) - cos(pi*x(2)); if nargout > 1 J = [2*x(1), 2*x(2); 1, pi*sin(pi*x(2))]; end 其中,F是方程组的函数值,J是函数的雅可比矩阵,即一阶偏导数矩阵。 2.初始化参数。设定初始值向量x0和迭代终止条件tol,以及最大迭代次数maxiter。 3.迭代求解。利用牛顿迭代法公式: x(k+1) = x(k) - J(x(k))^(-1) * F(x(k)) 其中,J(x(k))是雅可比矩阵在当前点的值,^-1表示矩阵的逆。 在MATLAB中,可以通过以下代码实现迭代: x = x0; k = 0; while norm(F) > tol && k < maxiter [F, J] = nonlinear(x); x = x - J\F'; k = k + 1; end 其中,norm(F)是向量F的二范数,表示向量F的长度。当F的长度小于tol,或者迭代次数达到maxiter时,则停止迭代。 4.输出结果。输出迭代次数k和求解结果x。 以上就是MATLAB牛顿迭代法求解非线性方程组的基本步骤。需要注意的是,非线性方程组的求解通常是非常困难的,可能会存在多解、无解或不收敛等情况,需要对算法进行优化和改进,或利用其他求解方法来辅助求解。 ### 回答3: 牛顿迭代法是一种高精度求解非线性方程组的算法,需要用到导数和雅可比矩阵。在Matlab中实现牛顿迭代法需要以下几个步骤: 1. 定义函数f(x)和雅可比矩阵J(x)。f(x)表示非线性方程组的各个函数表达式,J(x)表示f(x)的雅可比矩阵,即偏导数构成的矩阵。 2. 初始值赋值。对于方程组中的每一个未知数,初始值需要进行赋值。 3. 迭代计算。使用牛顿迭代公式计算下一个迭代点的数值,直到满足停止条件。 4. 检查迭代收敛性和稳定性。迭代点是否收敛于方程组的解,迭代过程是否稳定。 下面是一个Matlab代码示例,用牛顿迭代法解非线性方程组: ``` function [x1, x2] = newton_iteration(x1_0, x2_0, max_iteration, tolerance) %定义函数和初始值 f = @(x1, x2) [x1^2 + x2^2 - 4; x1^2 + x1*x2 - 5]; J = @(x1, x2) [2*x1, 2*x2; 2*x1 + x2, x1]; x = [x1_0; x2_0]; for i = 1:max_iteration %计算雅可比矩阵和f(x) Jx = J(x(1), x(2)); fx = f(x(1), x(2)); %计算下一个迭代点 delta_x = -Jx \ fx; x_new = x + delta_x; %判断停止条件 if norm(delta_x) < tolerance x1 = x_new(1); x2 = x_new(2); return end x = x_new; end error('达到最大迭代次数,未能达到精度要求!'); end ``` 在这个例子中,我们定义了一个非线性方程组,初始值为(1, 3),最大迭代次数为1000,容差为0.000001,然后使用牛顿迭代法计算方程组的根。如果迭代过程在1000次内无法满足精度要求,函数将返回一个错误。在计算结果输出后,我们可以使用f(x)来检查计算结果是否正确,并进一步检查迭代收敛性和稳定性。
阅读全文

相关推荐

最新推荐

recommend-type

Python实现多元线性回归方程梯度下降法与求函数极值

线性回归方程通常表示为 `Y = β0 + β1X1 + β2X2 + ... + βnXn`,其中 `Y` 是因变量,`X1, X2, ..., Xn` 是自变量,`β0, β1, β2, ..., βn` 是模型参数。 梯度下降法是优化算法的一种,常用于求解多元线性...
recommend-type

牛顿迭代法matlab程序

牛顿迭代法是一种常用的非线性方程组求解方法。该方法通过迭代公式来近似求解方程组的解。下面是牛顿迭代法的基本原理和 Matlab 实现。 牛顿迭代法基本原理 牛顿迭代法是一种迭代方法,用于求解非线性方程组。其...
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【天线性能提升密籍】:深入探究均匀线阵方向图设计原则及案例分析

![均匀线阵方向图](https://img-blog.csdnimg.cn/img_convert/0080eea0ca4af421d2bc9c74b87376c4.webp?x-oss-process=image/format,png) # 摘要 本文深入探讨了均匀线阵天线的基础理论及其方向图设计,旨在提升天线系统的性能和应用效能。文章首先介绍了均匀线阵及方向图的基本概念,并阐述了方向图设计的理论基础,包括波束形成与主瓣及副瓣特性的控制。随后,论文通过设计软件工具的应用和实际天线系统调试方法,展示了方向图设计的实践技巧。文中还包含了一系列案例分析,以实证研究验证理论,并探讨了均匀线阵性能
recommend-type

C#怎么把图片存入名为当前日期的文件夹里

在C#中,你可以通过`System.IO`命名空间下的`Directory`和`File`类来创建并存储图片到包含当前日期的文件夹里。以下是一个简单的示例: ```csharp using System; using System.IO; public void SaveImageToTodayFolder(string imagePath, string imageName) { // 获取当前日期 DateTime currentDate = DateTime.Now; string folderPath = Path.Combine(Environment.C