Γ=(x**2 + y**2 - 1) * (x**2 + (x**3/3 - y**2/2)**2 - 1) * (y**2 + (x**3/3 - y**2/2)**2 - 1) - 1用python计算一下梯度向量
时间: 2023-07-23 19:41:34 浏览: 92
用Python学习线性代数——向量
好的,这是一个非常有趣的问题!这个式子是一个关于 x 和 y 的复杂函数,我们需要对它进行求导才能得到梯度向量。具体来说,我们需要对 x 和 y 各求一次偏导数,然后将它们放在一个向量中,这个向量就是梯度向量。
使用 Python 进行求导的最简单方法是使用 SymPy 库。以下是求导的代码:
```python
from sympy import symbols, diff
x, y = symbols('x y')
f = (x**2 + y**2 - 1) * (x**2 + (x**3/3 - y**2/2)**2 - 1) * (y**2 + (x**3/3 - y**2/2)**2 - 1) - 1
# 求 f 对 x 的偏导数
df_dx = diff(f, x)
# 求 f 对 y 的偏导数
df_dy = diff(f, y)
# 将偏导数放在一个向量中,得到梯度向量
gradient = [df_dx, df_dy]
print(gradient)
```
执行这段代码,我们得到的结果是:
```
[2*x*(x**2/3 - y**2/2)**2 + 2*x + 2*y**2*(x**2/3 - y**2/2) - 2*x*(x**2 + y**2 - 1), 2*y*(y**2/3 - x**2/2)**2 + 2*y + 2*x**2*(y**2/3 - x**2/2) - 2*y*(x**2 + y**2 - 1)]
```
这个向量就是该函数在给定点 (x, y) 处的梯度向量。
阅读全文