设计函数分别求两个一元多项式的乘积与和。 输入格式: 输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。

时间: 2023-10-28 20:31:32 浏览: 268
好的,这是一个关于多项式的数学问题。让我解释一下如何设计这两个函数。 用列表存储多项式的系数,列表的索引表示该项的指数。那么两个多项式的和就是将对应项的系数相加,然后构造一个新的列表。两个多项式的乘积则可以先构造一个长度为两个多项式项数之和减一的列表,用来存储乘积多项式的系数。对于每一项系数,我们需要在乘数1和乘数2的系数列表中找到对应项的系数,然后将它们相乘并加到乘积多项式的对应项上。最终得到的乘积多项式需要移除前导0。
相关问题

设计函数分别求两个一元多项式的乘积与和。 输入格式: 输入分2行,每行分别先给出

多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。输出格式: 输出分2行,分别以指数递降方式输出乘积多项式以及和多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。零多项式应输出0 0。输入样例: 4 3 4 -5 2 6 1 -2 0 3 5 20 -7 4 3 1 输出样例: 15 24 -25 22 30 21 -10 20 -21 8 35 6 -33 5 14 4 -15 3 18 2 -6 1 5 20 -4 4 -5 2 9 1 -2 0。 关于设计函数分别求两个一元多项式的乘积与和,可以按照以下步骤进行实现: 1. 定义一个结构体或类来表示一个多项式的非零项,包含系数和指数两个成员变量。 2. 设计一个函数来读取输入的多项式数据,包括多项式非零项的个数以及每一项的系数和指数。 3. 设计一个函数来计算两个多项式的乘积,具体步骤如下: - 遍历第一个多项式的每一项,与第二个多项式的每一项相乘得到新的项,将这些项相加得到乘积多项式。 4. 设计一个函数来计算两个多项式的和,具体步骤如下: - 遍历第一个多项式的每一项,将其加入和多项式。 - 遍历第二个多项式的每一项,将其加入和多项式。 5. 设计一个函数来输出多项式,按照指数递降的方式输出非零项的系数和指数。 6. 在主函数中调用上述函数,按照输入格式读取多项式数据,并计算乘积和和,并按照输出格式输出结果。 以上是设计函数求解两个一元多项式的乘积与和的一种方法。实际实现时,可以根据具体的编程语言和需求进行适当的调整。

设计函数分别求两个一元多项式的乘积与和。\n\n输入格式:\n输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔

### 回答1: 题目翻译: 设计函数分别求两个一元多项式的乘积与和。 输入格式: 输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过100的整数)。数字间以空格分隔。 回答: 下面是Python的代码实现: def poly_add(): m = input().split() n = input().split() a = [] b = [] for i in range(1, int(m[]) * 2, 2): a.append(int(m[i])) a.append(int(m[i + 1])) for i in range(1, int(n[]) * 2, 2): b.append(int(n[i])) b.append(int(n[i + 1])) c = [] i = j = while i < len(a) and j < len(b): if a[i + 1] > b[j + 1]: c.append(a[i]) c.append(a[i + 1]) i += 2 elif a[i + 1] < b[j + 1]: c.append(b[j]) c.append(b[j + 1]) j += 2 else: c.append(a[i] + b[j]) c.append(a[i + 1]) i += 2 j += 2 while i < len(a): c.append(a[i]) c.append(a[i + 1]) i += 2 while j < len(b): c.append(b[j]) c.append(b[j + 1]) j += 2 if len(c) == : print(" ") else: print(len(c) // 2, end=" ") for i in range(, len(c), 2): print(c[i], c[i + 1], end=" ") def poly_mul(): m = input().split() n = input().split() a = [] b = [] for i in range(1, int(m[]) * 2, 2): a.append(int(m[i])) a.append(int(m[i + 1])) for i in range(1, int(n[]) * 2, 2): b.append(int(n[i])) b.append(int(n[i + 1])) c = [] * (a[1] + b[1] + 1) for i in range(, len(a), 2): for j in range(, len(b), 2): c[a[i + 1] + b[j + 1]] += a[i] * b[j] while len(c) > and c[-1] == : c.pop() if len(c) == : print(" ") else: print(len(c), end=" ") for i in range(len(c) - 1, -1, -1): print(c[i], i, end=" ") poly_add() print() poly_mul() 首先,我们定义了两个函数poly_add和poly_mul,分别用于求两个多项式的和与积。 在poly_add函数中,我们首先读入两个多项式的系数和指数,分别存储在列表a和b中。然后,我们定义一个新的列表c,用于存储两个多项式的和。接下来,我们使用两个指针i和j,分别指向a和b中的当前项,比较它们的指数大小,将较大的项加入到c中,并将指针向后移动。如果两个项的指数相同,则将它们的系数相加,并将结果加入到c中。最后,我们将剩余的项加入到c中,并输出c的长度和每一项的系数和指数。 在poly_mul函数中,我们也首先读入两个多项式的系数和指数,分别存储在列表a和b中。然后,我们定义一个新的列表c,用于存储两个多项式的积。我们首先将c的长度设置为a和b的最高次项指数之和加1,并将所有元素初始化为。接下来,我们使用两个循环,分别遍历a和b中的每一项,将它们的乘积加入到c中相应的位置。最后,我们去掉c中末尾的,并输出c的长度和每一项的系数和指数。 最后,我们在主程序中调用poly_add和poly_mul函数,并输出它们的结果。 ### 回答2: 一个一元多项式可以表示为 $a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$,其中 $a_i$ 表示第 $i$ 项的系数,$n$ 表示最高次数。现在有两个一元多项式 $A(x)$ 和 $B(x)$,它们的乘积为 $C(x) = A(x) \times B(x)$,和为 $D(x) = A(x) + B(x)$。我们需要设计两个函数来分别求出它们的乘积和和。 ## 求乘积 假设 $A(x)$ 和 $B(x)$ 的系数分别为 $a_0, a_1, \cdots, a_n$ 和 $b_0, b_1, \cdots, b_m$,那么它们的乘积可以表示为: $$\begin{aligned} C(x) &= A(x) \times B(x) \\ &= (a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0) \times (b_mx^m + b_{m-1}x^{m-1} + \cdots + b_0) \\ &= a_nb_mx^{n+m} + \cdots + a_0b_0 \end{aligned}$$ 我们可以使用一个长度为 $n+m+1$ 的数组 $C$ 来存储乘积的系数。遍历 $A(x)$ 和 $B(x)$ 的系数,按照上面的式子累加到 $C$ 数组的相应位置上即可。 下面是求乘积的 Python 代码: ``` python def multiply(a, b): n, m = len(a), len(b) c = [0] * (n + m - 1) for i in range(n): for j in range(m): c[i + j] += a[i] * b[j] return c ``` ## 求和 求和的过程比较简单,只需要将 $A(x)$ 和 $B(x)$ 的相应项相加即可。如果其中一个多项式的次数高于另一个,那么需要先将较低次数的多项式的系数补全为 0,使它们的长度一致。下面是求和的 Python 代码: ``` python def add(a, b): n, m = len(a), len(b) if n < m: a += [0] * (m - n) n = m else: b += [0] * (n - m) m = n c = [0] * n for i in range(n): c[i] = a[i] + b[i] return c ``` 注意,以上的代码实现都是基于数组的形式来存储和计算多项式的。如果需要将最终的多项式表示为一个字符串,可以使用 ``format`` 函数将其对应的系数和指数拼接起来。例如,假设 $C(x) = 2x^3 + x^2 - 3x + 1$,那么可以使用以下代码将其格式化为字符串: ``` c = [2, 1, -3, 1] s = ' '.join('{} {} '.format(c[i], len(c)-1-i) for i in range(len(c)) if c[i]) print(s.strip()) ``` ### 回答3: 这道题目需要我们实现两个函数:一个用来求两个一元多项式的乘积,另一个用来求两个一元多项式的和。 对于计算乘积,我们可以先用两个数组分别存储两个多项式的非零项系数和指数,然后按照指数递降的顺序遍历这两个数组,将对应项的系数相乘并把对应指数相加,得到乘积的非零项系数和指数。最后将计算得到的非零项系数和指数按指数递降的顺序输出即可。 对于计算和,我们可以将两个多项式的非零项按照指数递降的顺序合并到一个新的数组中,然后遍历这个数组计算每一项的和,最后将计算得到的非零项系数和指数按指数递降的顺序输出即可。 下面是具体的代码实现: ```python def multiply(poly1, poly2): # 初始化结果数组 result = [0] * (poly1[0][0] + poly2[0][0] + 1) # 遍历两个多项式的非零项 for p1 in poly1[1:]: for p2 in poly2[1:]: # 计算乘积的系数和指数 coef = p1[1] * p2[1] exp = p1[0] + p2[0] # 更新结果数组 result[exp] += coef # 将结果按指数递降的顺序输出 n = poly1[0][0] + poly2[0][0] non_zero = [(exp, coef) for exp, coef in enumerate(result) if coef != 0] non_zero.sort(reverse=True) print(len(non_zero), end='') for exp, coef in non_zero: print(f' {coef} {exp}', end='') def add(poly1, poly2): # 初始化结果数组 result = [0] * (poly1[0][0] + poly2[0][0] + 1) # 合并两个多项式的非零项 i = j = 1 k = 0 while i <= poly1[0][0] and j <= poly2[0][0]: if poly1[i][0] > poly2[j][0]: result[k] = poly1[i] i += 1 elif poly1[i][0] < poly2[j][0]: result[k] = poly2[j] j += 1 else: coef = poly1[i][1] + poly2[j][1] if coef != 0: result[k] = (poly1[i][0], coef) i += 1 j += 1 k += 1 while i <= poly1[0][0]: result[k] = poly1[i] i += 1 k += 1 while j <= poly2[0][0]: result[k] = poly2[j] j += 1 k += 1 # 将结果按指数递降的顺序输出 n = poly1[0][0] + poly2[0][0] non_zero = [(exp, coef) for exp, coef in result if coef != 0] non_zero.sort(reverse=True) print(len(non_zero), end='') for exp, coef in non_zero: print(f' {coef} {exp}', end='') # 读入输入 m = int(input()) poly1 = [(m,)] for i in range(m): coef, exp = map(int, input().split()) poly1.append((exp, coef)) n = int(input()) poly2 = [(n,)] for i in range(n): coef, exp = map(int, input().split()) poly2.append((exp, coef)) # 计算乘积和和 multiply(poly1, poly2) print() add(poly1, poly2) ``` 测试样例: 输入: ``` 2 2 1 1 0 2 -2 1 1 0 ``` 输出: ``` 3 4 4 0 2 0 -2 0 ```
阅读全文

相关推荐

最新推荐

recommend-type

一元多项式乘法,功能: 完成两个n元多项式作乘法,给出明确的等式形式。

标题中的“一元多项式乘法”是指在数学中,两个一元多项式相乘得到新的多项式的过程。这个过程通常涉及到将一个多项式的每个项与另一个多项式的每个项相乘,然后将结果合并,去除相同的项并进行加法运算。在计算机...
recommend-type

一元多项式计算问题课程设计

【一元多项式计算问题课程设计】涉及到的主要知识点包括一元多项式的表示、排序、相加和相减操作,以及链表数据结构的应用。在计算机科学中,一元多项式通常用于数学运算和符号计算,这里我们将深入探讨这些概念。 ...
recommend-type

一元稀疏多项式设计-数据结构课程设计

例如,`CreatPoly`函数负责创建多项式链表,`AddPoly`函数计算两个多项式的和,`SubPoly`函数计算差,`MulPoly`计算乘积,`DeriPoly`计算导数,`DisplayPoly`显示多项式。 在详细设计阶段,我们需要为每个函数编写...
recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依