def findClosestCentroids(X, centroids): #定义函数findClosestCentroids """ Returns the closest centroids in idx for a dataset X where each row is a single example. """ K = centroids.shape[0] #获得数组centroids的行数并赋值给K idx = np.zeros((X.shape[0],1)) #定义idx为X.shape[0]行1列的零数组 temp = np.zeros((centroids.shape[0],1)) #定义temp为centroids.shape[0]行1列的数组 for i in range(X.shape[0]): #i遍历循环X.shape[0] for j in range(K): #j遍历循环K dist = X[i,:] - centroids[j,:] # length = np.sum(dist**2) temp[j] = length idx[i] = np.argmin(temp)+1 return idx 给这段代码注释
时间: 2023-06-17 21:06:00 浏览: 103
# 定义函数findClosestCentroids,它接受两个参数:数据集X和聚类中心centroids
# 函数的作用是为数据集中的每个样本找到距离它最近的聚类中心,并将其对应的聚类中心下标存储在idx中
# 获取聚类中心的数量K
K = centroids.shape[0]
# 初始化idx为X.shape[0]行1列的零数组
idx = np.zeros((X.shape[0],1))
# 初始化temp为centroids.shape[0]行1列的数组
temp = np.zeros((centroids.shape[0],1))
# 遍历数据集X中的每个样本
for i in range(X.shape[0]):
# 遍历每个聚类中心
for j in range(K):
# 计算当前样本到聚类中心的距离
dist = X[i,:] - centroids[j,:]
# 将距离的平方和存储在temp数组中
length = np.sum(dist**2)
temp[j] = length
# 找到距离当前样本最近的聚类中心下标,并将其加1存储在idx中
idx[i] = np.argmin(temp)+1
# 返回存储聚类中心下标的idx
return idx
相关问题
def findClosestCentroids(X, centroids): #定义函数findClosestCentroids """ Returns the closest centroids in idx for a dataset X where each row is a single example. """ K = centroids.shape[0] #获得数组centroids的行数并赋值给K idx = np.zeros((X.shape[0],1)) #定义idx为X.shape[0]行1列的零数组 temp = np.zeros((centroids.shape[0],1)) #定义temp为centroids.shape[0]行1列的数组 for i in range(X.shape[0]): #i遍历循环X.shape[0] for j in range(K): #j遍历循环K dist = X[i,:] - centroids[j,:] # length = np.sum(dist**2) temp[j] = length idx[i] = np.argmin(temp)+1 return idx
这段代码实现了K-means算法中的最近邻分类操作。给定数据集X和聚类中心centroids,该函数会将每个样本点指派给距离其最近的聚类中心,并返回每个样本点所属的聚类中心的编号。具体来说,该函数会遍历数据集中的每个样本点和每个聚类中心,计算样本点和聚类中心之间的欧式距离,并将距离最近的聚类中心的编号保存在idx数组中。最后,该函数返回idx数组,其中第i个元素表示第i个样本点所属的聚类中心的编号。
import numpy as np class KMeans: def __init__(self, k=2, tolerance=0.0001, max_iterations=300): self.k = k self.tolerance = tolerance self.max_iterations = max_iterations def fit(self, data): self.centroids = {} # Initialize the centroids, the first 'k' data points in the dataset for i in range(self.k): self.centroids[i] = data[i] # Begin the iterations for i in range(self.max_iterations): self.classes = {} for j in range(self.k): self.classes[j] = [] # Find the distance between the point and cluster; choose the nearest centroid for point in data: distances = [np.linalg.norm(point - self.centroids[centroid]) for centroid in self.centroids] classification = distances.index(min(distances)) self.classes[classification].append(point) previous = dict(self.centroids) # Calculate the mean of the clusters to update the centroids for classification in self.classes: self.centroids[classification] = np.average(self.classes[classification], axis=0) # Check if converged is_converged = True for centroid in self.centroids: original_centroid = previous[centroid] curr_centroid = self.centroids[centroid] if np.sum((curr_centroid - original_centroid) / original_centroid * 100.0) > self.tolerance: is_converged = False # If converged, break out of the loop if is_converged: break解释具体代码含义
这段代码是 Python 语言中使用 NumPy 库实现的 K 均值聚类算法。`import numpy as np` 是导入 NumPy 库并将其重命名为 `np`,方便在代码中使用。`class KMeans` 是定义了一个 KMeans 类,用于实现 K 均值聚类算法。`__init__` 函数是类的构造函数,用于初始化类的属性,包括聚类数目 `k`,容忍度 `tolerance` 和最大迭代次数 `max_iterations`。`fit` 函数是实现 K 均值聚类算法的主要函数,会根据输入的数据集 `data` 进行迭代,计算出聚类中心点 `centroids`,直到达到容忍度或者最大迭代次数的限制。
阅读全文