model_train = model_train.cuda(local_rank)
时间: 2024-02-03 14:02:44 浏览: 64
这段代码是将 PyTorch 模型移动到本地指定的 CUDA 设备上进行训练,其中 `local_rank` 是指本地设备的 ID。在多 GPU 训练中,通常会使用分布式训练,将模型参数和梯度分布式地存储在多个 GPU 上,通过 `torch.nn.parallel.DistributedDataParallel` 模块来进行多 GPU 训练。在这种情况下,使用 `model_train.cuda(local_rank)` 将模型移动到本地指定的 CUDA 设备上进行训练。如果只使用单个 GPU 进行训练,可以使用 `model_train.cuda()` 将模型移动到默认的第一个 CUDA 设备上进行训练。
相关问题
解释代码 if Cuda: if distributed: model_train = model_train.cuda(local_rank) model_train = torch.nn.parallel.DistributedDataParallel(model_train, device_ids=[local_rank], find_unused_parameters=True) else: model_train = torch.nn.DataParallel(model) cudnn.benchmark = True model_train = model_train.cuda() with open(train_annotation_path, encoding='utf-8') as f: train_lines = f.readlines() with open(test_annotation_path, encoding='utf-8') as f: val_lines = f.readlines() num_train = len(train_lines) num_val = len(val_lines) np.random.seed(10101) np.random.shuffle(train_lines) np.random.seed(None)
这段代码是用来对模型进行 GPU 加速并加载训练集和测试集。
首先,判断是否使用 GPU 进行训练,如果使用则进一步判断是否进行分布式训练。如果进行分布式训练,则将模型转移到当前进程所在的 GPU 上,并使用 `torch.nn.parallel.DistributedDataParallel` 方法将模型包装为分布式数据并行模型。在包装模型时,需要指定当前进程所在的 GPU ID,以及通过 `find_unused_parameters` 参数来指示是否查找未使用的参数,以避免出现异常。
如果未进行分布式训练,则使用 `torch.nn.DataParallel` 方法将模型包装为数据并行模型,并使用 `cudnn.benchmark = True` 来启用 cuDNN 自动寻找最适合当前硬件的卷积算法。最后,将模型转移到 GPU 上。
接下来,使用 `open` 函数打开训练集和测试集的注释文件,并读取其中的所有行。然后,使用 `len` 函数计算训练集和测试集的样本数量。接着,使用 `np.random.seed` 函数设置随机种子,并使用 `np.random.shuffle` 函数将训练集的所有行打乱,以增加训练的随机性。
最后,这段代码返回了读取的训练集和测试集行数。
lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch) model.Unfreeze_backbone() epoch_step = num_train // batch_size epoch_step_val = num_val // batch_size if epoch_step == 0 or epoch_step_val == 0: raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。") if distributed: batch_size = batch_size // ngpus_per_node gen = DataLoader(train_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=detection_collate, sampler=train_sampler) gen_val = DataLoader(val_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=detection_collate, sampler=val_sampler) UnFreeze_flag = True if distributed: train_sampler.set_epoch(epoch) set_optimizer_lr(optimizer, lr_scheduler_func, epoch) fit_one_epoch(model_train, model, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank) if local_rank == 0: loss_history.writer.close() 转为伪代码
lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch)
model.Unfreeze_backbone()
epoch_step = num_train // batch_size
epoch_step_val = num_val // batch_size
if epoch_step == 0 or epoch_step_val == 0:
raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。")
if distributed:
batch_size = batch_size // ngpus_per_node
gen = DataLoader(train_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=detection_collate, sampler=train_sampler)
gen_val = DataLoader(val_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=detection_collate, sampler=val_sampler)
UnFreeze_flag = True
if distributed:
train_sampler.set_epoch(epoch)
set_optimizer_lr(optimizer, lr_scheduler_func, epoch)
fit_one_epoch(model_train, model, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank)
if local_rank == 0:
loss_history.writer.close()
伪代码并不是一种具体的编程语言,而是一种算法描述语言,因此将上述代码转换为伪代码就是将其转换为类似于自然语言的算法描述。在这个过程中,可以将代码中的特定语法和语言结构替换为通用的算法表达方式,以便更清晰地表达算法的逻辑和流程。
阅读全文