OLS Regression Results Dep. Variable: y R-squared: 0.049 Model: OLS Adj. R-squared: 0.036 Method: Least Squares F-statistic: 3.581 Date: Sun, 11 Jun 2023 Prob (F-statistic): 0.0305 Time: 11:18:35 Log-Likelihood: 96.141 No. Observations: 141 AIC: -186.3 Df Residuals: 138 BIC: -177.4 Df Model: 2 Covariance Type: nonrobust coef std err t P>|t| [0.025 0.975] const -0.3218 2.006 -0.160 0.873 -4.288 3.644 x1 0.1296 1.317 0.098 0.922 -2.474 2.733 x2 0.0029 0.216 0.014 0.989 -0.423 0.429 Omnibus: 86.169 Durbin-Watson: 2.062 Prob(Omnibus): 0.000 Jarque-Bera (JB): 394.216 Skew: 2.304 Prob(JB): 2.50e-86 Kurtosis: 9.772 Cond. No. 2.31e+03 Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 2.31e+03. This might indicate that there are strong multicollinearity or other numerical problems.
时间: 2024-03-30 20:39:50 浏览: 437
GeoDaCenter.github.io:GeoDa源代码-git source code
这是一个OLS回归结果汇总表,其中包含了回归模型的基本信息、拟合度、系数、显著性检验等多个指标。具体解读如下:
- Dep. Variable:因变量为y。
- R-squared:拟合优度为0.049,即模型能够解释因变量变异的4.9%。
- Adj. R-squared:根据自变量数量进行调整后的拟合优度为0.036,说明模型的解释能力有限。
- F-statistic:F值为3.581,对应的P值为0.0305,说明模型具有一定的显著性。
- Prob (F-statistic):F检验的P值为0.0305,小于通常的显著性水平0.05,说明回归模型在总体上是显著的。
- const、x1、x2:分别是截距项和自变量的回归系数。
- t:t值表示系数是否显著,P>|t|表示对应的双侧检验的P值。
- [0.025 0.975]:系数的置信区间,如果包含了0则说明系数不显著。
- Omnibus:Omnibus值为86.169,对应的P值为0.000,说明残差不服从正态分布。
- Durbin-Watson:Durbin-Watson值为2.062,说明残差之间存在自相关性。
- Prob(Omnibus):Omnibus检验的P值为0.000,小于0.05,说明残差不服从正态分布。
- Jarque-Bera (JB):JB值为394.216,对应的P值为2.50e-86,说明残差不服从正态分布。
- Skew:Skew值为2.304,说明残差呈现严重的正偏态分布。
- Kurtosis:Kurtosis值为9.772,说明残差呈现严重的峰态分布。
- Cond. No.:条件数为2.31e+03,说明模型存在较强的多重共线性或者其他数值问题。
阅读全文