读取csv文件两列,四参数逻辑拟合,并计算均方差和标准差,并使用最小二乘法优化参数以及迭代次数可设置,散点曲线可视化
时间: 2024-04-07 12:33:37 浏览: 49
Sure! To visualize the scatter plot and the fitted curve, you can use the matplotlib library in Python. Here's an updated version of the previous code that includes scatter plot visualization:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
# Read CSV file
data = pd.read_csv('data.csv')
x = data['x'].values
y = data['y'].values
# Define four-parameter logistic function
def four_param_func(x, a, b, c, d):
return a / (1 + np.exp(-c * (x - d))) + b
# Initial parameter values
initial_params = [1, 1, 1, 1]
# Fit the curve
params, params_covariance = curve_fit(four_param_func, x, y, p0=initial_params)
# Calculate fitted values
y_fit = four_param_func(x, *params)
# Calculate mean squared error and standard deviation
mse = np.mean((y - y_fit)**2)
std = np.std(y - y_fit)
# Print results
print("Fitted parameters:", params)
print("Mean squared error:", mse)
print("Standard deviation:", std)
# Scatter plot and fitted curve visualization
plt.scatter(x, y, label='Data')
plt.plot(x, y_fit, 'r',***
阅读全文