import json with open('D:\\jupyter\\VW\\VW lable.json', 'r', encoding='utf-8') as f: data = json.load(f) print(data) 如何遍历上述代码读取的多个数据
时间: 2024-05-11 08:20:24 浏览: 97
如果上述代码读取的是一个包含多个数据的 JSON 文件,可以使用循环来遍历每个数据。例如,可以使用以下代码:
```
import json
with open('D:\\jupyter\\VW\\VW lable.json', 'r', encoding='utf-8') as f:
data = json.load(f)
for item in data:
# 对每个数据进行处理,例如打印出来
print(item)
```
在上面的代码中,`data` 是包含多个数据的 JSON 对象。使用 `for` 循环遍历 `data`,对于每个数据都执行相同的操作。在本例中,我们只是打印出每个数据,但你可以用其他方式处理每个数据,例如将它们存储到数据库中。
相关问题
class RandomDataset(torch.utils.data.Dataset): def __init__(self, data, length): self.data = data self.len = length def __getitem__(self, index): # print("self.data:", self.data.shape) return torch.Tensor(self.data[index, :, :, :]).float() def __len__(self): return self.len trn_loader = torch.utils.data.DataLoader(dataset=RandomDataset(Training_lable, 89600), batch_size=args.batch_size, shuffle=True, **kwopt, drop_last=False) return trn_loader
这段代码定义了一个名为 "RandomDataset" 的数据集类,并定义了该类的构造函数、__getitem__ 和 __len__ 方法。构造函数 __init__ 接收两个参数:data 和 length。其中,data 是输入数据,length 是数据集的长度。__getitem__ 方法用于获取指定索引的数据。在该方法中,代码首先从输入数据中获取指定索引的数据,然后将其转换成 torch.Tensor,并将其返回。__len__ 方法返回该数据集的长度。
接下来,代码创建了一个名为 "trn_loader" 的数据加载器,该加载器使用 RandomDataset 类创建数据集,并使用 batch_size、shuffle 和 **kwopt 等参数进行配置。最后,代码返回了该数据加载器。该代码的目的是将训练数据和标签转换成 torch.Tensor,并创建一个 PyTorch 数据加载器,以便进行机器学习模型的训练。
path = 'F:\GTSRB-德国交通标志识别图像数据' csv_files = [] for dirpath, dirnames, filenames in os.walk(path, topdown=False): for filename in filenames: if filename.endswith('.csv'): csv_files.append(os.path.join(dirpath, filename)) #%% import matplotlib.image as mpimg test_image=[] test_lable=[] x='' csv=csv_files[1] #F:\GTSRB-德国交通标志识别图像数据\Test.csv base_path = os.path.dirname(csv) # read csv data trafficSigns = [] with open(csv,'r',newline='') as file: header = file.readline() header = header.strip() header_list = header.split(',') print(header_list) #print(header_list[6]) for row in file.readlines(): row_data = row.split(',') x=row_data[7] x='F:/GTSRB-德国交通标志识别图像数据/'+x x=x.strip('\n') m=row_data[6] test_lable.append(int(row_data[6])) test = Image.open(x) test = test.resize((48,48),Image.ANTIALIAS) test = np.array(test) test_image.append(test) #%% test_data = np.array(test_image) #%% test_lable = np.array(test_lable) #%% #标签进行one-hot编码 labels = test_lable one_hot_labels = tf.one_hot(indices=labels,depth=43, on_value=1, off_value=0, axis=-1, dtype=tf.int32, name="one-hot") #%% #print(one_hot_labels.shape) test_datagen = ImageDataGenerator( rescale=1. /255 ) test_data_generator = test_datagen.flow( x=test_data, y=one_hot_labels, #target_size=(48, 48), batch_size=32 #class_mode='categorical' ) #%% print(test_lable)
这段代码的功能是读取指定路径下的CSV文件,并根据CSV文件中的信息加载图像数据和标签。下面是对这段代码的解释:
1. 首先,通过使用`os.walk`函数遍历指定路径下的所有文件和文件夹,并将以`.csv`结尾的文件路径添加到`csv_files`列表中。
2. 接下来,导入所需的库,其中`matplotlib.image`用于读取图像数据。
3. 定义一个空列表`test_image`和`test_label`用于存储图像数据和标签。
4. 通过选择一个CSV文件路径,例如`csv_files[1]`,并获取其所在目录的路径。
5. 打开CSV文件,读取文件中的内容。首先读取文件的第一行,作为列名,并将其转换为列表形式存储在`header_list`中。
6. 接下来,遍历文件的每一行,将每行数据转换为列表形式存储在`row_data`中。在这个过程中,从第7个位置获取图像文件的路径,并将其与基本路径拼接成完整路径`x`。
7. 将第6个位置的标签值转换为整数,并将其添加到`test_label`列表中。
8. 使用PIL库的`Image.open()`方法打开图像文件,调整图像大小为(48,48),并将其转换为数组形式存储在`test_image`列表中。
9. 将`test_image`列表转换为NumPy数组形式存储在`test_data`中。
10. 将`test_label`列表转换为NumPy数组形式存储在`test_label`中。
11. 使用TensorFlow的`tf.one_hot()`函数对标签进行one-hot编码,将其转换为独热编码形式存储在`one_hot_labels`中。
12. 使用`ImageDataGenerator`函数创建一个测试数据生成器`test_data_generator`,用于在后续的模型评估中生成测试数据批次。
13. 最后,打印输出`test_label`,即测试数据的标签。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)