导入pyspark.conf,pyspark.sparkcontext,pyspark.mllib,实现SVM对于新闻的分类。数据集为多个按照类别分类的文件夹,每个文件夹下为新闻的中文正文内容,采用tf-idf对数据集进行清洗和处理,得到RDD。路径为/project/类别、文本
时间: 2023-12-14 12:38:52 浏览: 143
首先,需要在终端使用以下命令启动pyspark:
```
pyspark --master yarn --deploy-mode client
```
然后,在pyspark中进行以下操作:
1. 导入必要的库和模块
```python
from pyspark.conf import SparkConf
from pyspark.sql import SparkSession
from pyspark.ml.feature import HashingTF, IDF, Tokenizer
from pyspark.ml.classification import LinearSVC
from pyspark.ml import Pipeline
```
2. 创建SparkSession
```python
conf = SparkConf().setAppName("News Classification with SVM")
spark = SparkSession.builder.config(conf=conf).getOrCreate()
```
3. 加载数据集
```python
path = "/project/*/*"
data = spark.sparkContext.wholeTextFiles(path)
```
4. 将数据集转换为DataFrame格式
```python
df = data.toDF(["path", "text"])
```
5. 对文本进行分词和TF-IDF处理
```python
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="rawFeatures")
idf = IDF(inputCol=hashingTF.getOutputCol(), outputCol="features")
pipeline = Pipeline(stages=[tokenizer, hashingTF, idf])
model = pipeline.fit(df)
result = model.transform(df)
```
6. 将数据集划分为训练集和测试集
```python
train, test = result.randomSplit([0.8, 0.2], seed=12345)
```
7. 训练SVM模型并进行预测
```python
svm = LinearSVC(maxIter=10, regParam=0.1)
svmModel = svm.fit(train)
predictions = svmModel.transform(test)
```
8. 对预测结果进行评估
```python
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
evaluator = MulticlassClassificationEvaluator(predictionCol="prediction")
accuracy = evaluator.evaluate(predictions)
print("Accuracy = %g" % (accuracy))
```
完整代码如下:
```python
from pyspark.conf import SparkConf
from pyspark.sql import SparkSession
from pyspark.ml.feature import HashingTF, IDF, Tokenizer
from pyspark.ml.classification import LinearSVC
from pyspark.ml import Pipeline
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
conf = SparkConf().setAppName("News Classification with SVM")
spark = SparkSession.builder.config(conf=conf).getOrCreate()
path = "/project/*/*"
data = spark.sparkContext.wholeTextFiles(path)
df = data.toDF(["path", "text"])
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="rawFeatures")
idf = IDF(inputCol=hashingTF.getOutputCol(), outputCol="features")
pipeline = Pipeline(stages=[tokenizer, hashingTF, idf])
model = pipeline.fit(df)
result = model.transform(df)
train, test = result.randomSplit([0.8, 0.2], seed=12345)
svm = LinearSVC(maxIter=10, regParam=0.1)
svmModel = svm.fit(train)
predictions = svmModel.transform(test)
evaluator = MulticlassClassificationEvaluator(predictionCol="prediction")
accuracy = evaluator.evaluate(predictions)
print("Accuracy = %g" % (accuracy))
spark.stop()
```
阅读全文