解释 def display(self, points, lines, locs, result: np.ndarray): if points == -1: QtWidgets.QMessageBox.warning(self, 'warning', f'口罩检测失败,图中未发现口罩,请更换图片后重试!', buttons=QtWidgets.QMessageBox.Ok) self.clear()

时间: 2024-02-14 19:24:44 浏览: 64
这是一个 Python 的类方法,命名为 `display`。该方法接受四个参数: - `points`:点的坐标,类型为整数,如果值为 `-1`,则表示未检测到口罩。 - `lines`:线的坐标,类型为整数。 - `locs`:检测到口罩的区域坐标,类型为整数。 - `result`:口罩检测的结果,类型为 Numpy 数组。 在 `display` 方法中,如果 `points` 的值为 `-1`,则弹出一个警告对话框,提示检测失败,并清空当前的图像。其中警告对话框的标题为 `'warning'`,内容为 `'口罩检测失败,图中未发现口罩,请更换图片后重试!'`。如果 `points` 不为 `-1`,则不会弹出警告对话框,而是显示口罩检测结果的图像。
相关问题

解释 def display(self, points, lines, locs, result: np.ndarray): if points == -1: QtWidgets.QMessageBox.warning(self, 'warning', f'口罩检测失败,图中未发现口罩,请更换图片后重试!', buttons=QtWidgets.QMessageBox.Ok) self.clear()

这是一个 Python 类中的方法,名为 `display`,它接受四个参数: - `points`: 检测到的口罩矩形框的顶点坐标,类型为整数。如果值为 `-1`,表示未检测到口罩。 - `lines`: 图像中的线段信息,类型为整数。 - `locs`: 人脸检测到的矩形框的位置,类型为整数。 - `result`: 口罩检测结果图像,类型为 Numpy 数组。 在 `display` 方法中,如果 `points` 的值为 `-1`,则会显示一个警告对话框,提示用户检测失败,并清空当前的图像。其中警告对话框的标题为 `'warning'`,内容为 `'口罩检测失败,图中未发现口罩,请更换图片后重试!'`。如果 `points` 不为 `-1`,则会显示口罩检测结果图像。无论是否弹出警告对话框,都会调用 `clear` 方法,将当前的图像清空。

def draw_stats(self, vals): self.ax1 = plt.subplot(1, 1, 1) self.ax1.plot(vals) self.ax1.set_xlim(self.xlim) locs = self.ax1.get_xticks() locs[0] = self.xlim[0] locs[-1] = self.xlim[1] self.ax1.set_xticks(locs) self.ax1.use_sticky_edges = False self.ax1.set_title(f'Connected Clients Ratio') plt.savefig('output.png', dpi=300) 中添加x轴y轴标签

可以使用以下代码在函数中添加x轴和y轴标签: ```python def draw_stats(self, vals): self.ax1 = plt.subplot(1, 1, 1) self.ax1.plot(vals) self.ax1.set_xlim(self.xlim) locs = self.ax1.get_xticks() locs[0] = self.xlim[0] locs[-1] = self.xlim[1] self.ax1.set_xticks(locs) self.ax1.use_sticky_edges = False self.ax1.set_title(f'Connected Clients Ratio') self.ax1.set_xlabel('Time') self.ax1.set_ylabel('Clients Ratio') plt.savefig('output.png', dpi=300) ``` 在上面的代码中,我们使用set_xlabel()和set_ylabel()函数分别添加x轴和y轴标签。这将在保存为PNG文件之前在图表中显示标签。
阅读全文

相关推荐

def set_tayloraxes(fig, location): trans = PolarAxes.PolarTransform() r1_locs = np.hstack((np.arange(1, 10) / 10.0, [0.95, 0.99,1])) t1_locs = np.arccos(r1_locs) gl1 = grid_finder.FixedLocator(t1_locs) tf1 = grid_finder.DictFormatter(dict(zip(t1_locs, map(str, r1_locs)))) r2_locs = np.arange(0, 2, 0.2) #r2_labels = ['0 ', '0.25 ', '0.50 ', '0.75 ', 'REF ', '1.25 ', '1.50 ', '1.75 '] r2_labels = ['0 ', '0.2 ', '0.4 ', '0.6','0.8 ', 'REF ', '1 ', '1.2 ', '1.4 ','1.6 ', '1.8 ', '2 '] gl2 = grid_finder.FixedLocator(r2_locs) tf2 = grid_finder.DictFormatter(dict(zip(r2_locs, map(str, r2_labels)))) ghelper = floating_axes.GridHelperCurveLinear(trans, extremes=(0, np.pi / 2, 0,2), grid_locator1=gl1, tick_formatter1=tf1, grid_locator2=gl2, tick_formatter2=tf2) ax = floating_axes.FloatingSubplot(fig, location, grid_helper=ghelper) fig.add_subplot(ax) ax.axis["top"].set_axis_direction("bottom") ax.axis["top"].toggle(ticklabels=True, label=True) ax.axis["top"].major_ticklabels.set_axis_direction("top") ax.axis["top"].label.set_axis_direction("top") ax.axis["top"].label.set_text("Correlation") ax.axis["top"].label.set_fontsize(14) ax.axis["left"].set_axis_direction("bottom") ax.axis["left"].label.set_text("Standard deviation") ax.axis["left"].label.set_fontsize(14) ax.axis["right"].set_axis_direction("top") ax.axis["right"].toggle(ticklabels=True) ax.axis["right"].major_ticklabels.set_axis_direction("left") ax.axis["bottom"].set_visible(False) ax.grid(True) polar_ax = ax.get_aux_axes(trans) rs, ts = np.meshgrid(np.linspace(0, 2, 100), np.linspace(0, np.pi / 2, 100)) rms = np.sqrt(1 + rs ** 2 - 2 * rs * np.cos(ts)) CS = polar_ax.contour(ts, rs, rms, colors='gray', linestyles='--') plt.clabel(CS, inline=1, fontsize=10) t = np.linspace(0, np.pi / 2) r = np.zeros_like(t) + 1 polar_ax.plot(t, r, 'k--') polar_ax.text(np.pi/2+0.032,1.02, " 1.00", size=10.3,ha="right", va="top", bbox=dict(boxstyle="square",ec='w',fc='w')) return polar_ax这段函数中如何让虚线中的数字消失

解释如下代码:def draw_matches(img1, kp1, img2, kp2, matches, color=None): """Draws lines between matching keypoints of two images. Keypoints not in a matching pair are not drawn. Args: img1: An openCV image ndarray in a grayscale or color format. kp1: A list of cv2.KeyPoint objects for img1. img2: An openCV image ndarray of the same format and with the same element type as img1. kp2: A list of cv2.KeyPoint objects for img2. matches: A list of DMatch objects whose trainIdx attribute refers to img1 keypoints and whose queryIdx attribute refers to img2 keypoints. """ # We're drawing them side by side. Get dimensions accordingly. # Handle both color and grayscale images. if len(img1.shape) == 3: new_shape = (max(img1.shape[0], img2.shape[0]), img1.shape[1]+img2.shape[1], img1.shape[2]) elif len(img1.shape) == 2: new_shape = (max(img1.shape[0], img2.shape[0]), img1.shape[1]+img2.shape[1]) new_img = np.zeros(new_shape, type(img1.flat[0])) # Place images onto the new image. new_img[0:img1.shape[0],0:img1.shape[1]] = img1 new_img[0:img2.shape[0],img1.shape[1]:img1.shape[1]+img2.shape[1]] = img2 # Draw lines between matches. Make sure to offset kp coords in second image appropriately. r = 2 thickness = 1 print(len(kp1),len(kp2), len(matches) ) if color: c = color for m in matches[0:20]: # Generate random color for RGB/BGR and grayscale images as needed. if not color: c = np.random.randint(0,256,3) if len(img1.shape) == 3 else np.random.randint(0,256) # So the keypoint locs are stored as a tuple of floats. cv2.line(), like most other things, # wants locs as a tuple of ints. c = [255,255,255] end1 = tuple(np.round(kp1[m.queryIdx].pt).astype(int)) end2 = tuple(np.round(kp2[m.trainIdx].pt).astype(int) + np.array([img1.shape[1], 0])) cv2.line(new_img, end1, end2, c, thickness) cv2.circle(new_img, end1, r, c, thickness) cv2.circle(new_img, end2, r, c, thickness) plt.figure(figsize=(15,15)) plt.imshow(new_img) plt.show()

最新推荐

recommend-type

YOLOv3-训练-修剪.zip

YOLOv3-训练-修剪YOLOv3-训练-修剪的Python3.6、Pytorch 1.1及以上,numpy>1.16,tensorboard=1.13以上YOLOv3的训练参考[博客](https://blog.csdn.net/qq_34795071/article/details/90769094 )基于的ultralytics/yolov3代码大家也可以看下这个https://github.com/tanluren/yolov3-channel-and-layer-pruning正常训练(基线)python train.py --data data/VHR.data --cfg cfg/yolov3.cfg --weights/yolov3.weights --epochs 100 --batch-size 32 #后面的epochs自行更改 直接加载weights可以更好的收敛剪枝算法介绍本代码基于论文Learning Efficient Convolutional Networks Through Network Slimming (ICCV
recommend-type

毕业设计&课设_智能算法中台管理系统.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001